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Abstract

Quantum field theory (QFT) is, like the Middle Ages, “enormous and delicate”. In trying

to beat a path to the heart of it, some tradeoffs are unavoidable. One of then is that we

choose to concentrate in the first part of this course more in ideas than in calculations. The

theory of spinless fields is employed as a general workshop for developing the main concepts,

before tackling the complications of more realistic models.

Also in QFT, tradition = Schlamperei. There are lot a pedagogically less-good and even

mistaken approaches that have taken root. Now and then we shall debunk them.

Starred sections contain illustrative rather than required material. However, all the

exercises are indispensable; and starred exercises mean greater difficulty.

Let us begin by fixing conventions: nearly always c = 1 and ~ = 1. This reduces the

mass, length and time units to a single one, that we call mass: M = T−1 = L−1. One can

come back to the usual unit system from a result of dimension Ma whose physical units are

LbT dMe by multiplying it by ~e−aca−d−e.
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1 Relativistic invariance

1.1 Preliminaries

In vacuum light propagates with respect to any inertial system and in all directions with a

universal velocity c, which is a constant of nature. This led to the introduction of the Minkowski

space M4, defined as (R4, g) with g the Lorentz bilinear form: if x1 := (x0
1 = ct1,x1), x2 = (x0

2 =

ct2,x2) are vectors in M4, their Minkowski product is denoted by

(x1x2) := x0
1x

0
2 − x1 · x2 = g(x1, x2).

Here t is a time coordinate. Recall that units are taken so that c = 1. Then one uses the metric

tensor

g = (gµν) = (gµν) =


1

−1

−1

−1


to lower or raise indices: xµ := gµνx

ν = (x0,−x). A four-vector x is timelike if (xx) > 0;

spacelike if (xx) < 0; lightlike or null if (xx) = 0.

The Poincaré group P is by definition the group of transformations of M4 leaving g invariant;

it is then the semidirect product T4 o O(1, 3), where T4 denotes the subgroup of spacetime

translations and O(1, 3) =: L is called the (full) Lorentz group, of which of we can think of as

of the group of matrices Λ for which ΛtgΛ = g. We write

(a,Λ) · (a′,Λ′) = (a+ Λa′,ΛΛ′) for a, a′ ∈ T4, Λ,Λ′ ∈ O(1, 3).

Also

(a,Λ)−1 = (−Λ−1a,Λ−1).

The laws of nature are invariant under the group of transformations x 7→ x′ = Λx + a, in

conditions under which the effects of gravity are negligible.

We focus for a while on the Lorentz subgroup. We have identified a general element Λ of it

with a 4× 4 real matrix (Λµν) so that

(Λx)µ = Λµνx
ν . (1.1)

Using the metric tensor g to lower or raise indices, invariance of the form (xx) = gµνx
µxν means

gµνΛµκΛνλ = gκλ, thus

δνµΛµκΛ κ
ν = δκκ(= 4), thus ΛµκΛ κ

ν = δµν , thus (Λ−1)κν = Λ κ
ν .

One sees as well that (Λ−1)κν = Λνκ; Λµρ gρσΛνσ = gµν . Since the inverse Λ−1 = gΛtg also

belongs to the group, we have ΛgΛt = g, which says the transpose belongs to the group as well.
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Sometimes we use the notation Λ−t for the contragredient matrix. Anticipating future needs,

we introduce the notation for partial derivatives with respect to the contravariant and covariant

variables:

∂µ :=
∂

∂xµ
=

(
∂

∂t
,∇
)

; ∂µ :=
∂

∂xµ
= gµν∂ν =

(
∂

∂t
,−∇

)
.

These notations are natural in that say ∂µ(xp) = ∂
∂xµ (xνpν) = pµ; ∂µ(xp) = ∂

∂xµ
(xνp

ν) = pµ.

Clearly (det Λ)2 = 1. This group has four connected components. To begin with, the

determinant of an element of O(1, 3) can be +1 or −1. Examples of Lorentz transformations

with negative determinant are

Is :=


1

−1

−1

−1

 , It :=


−1

1

1

1

 ,

the space-reflection and time-reversal transformations. Now, although

IsIt =


−1

−1

−1

−1

 .

has determinant +1, it cannot be continuously joined to the identity. In effect, if Λ = (Λµν),

from g(Λx,Λx) = g(x, x) for x = (1,0) ∈M4 we infer

(Λ0
0)2 = 1 + (Λ1

0)2 + (Λ2
0)2 + (Λ3

0)2,

implying that the sign of Λ0
0 must be constant on any component. There are then four “pieces”

in O(1, 3), denoted L↑+, L
↓
+, L

↑
−, L

↓
−, where the index + or − refers to the property det Λ = +1

or −1 respectively, and the upwards arrow means Λ0
0 ≥ 1 whereas the downwards arrow means

Λ0
0 ≤ −1. A typical element of L↑− is parity or space reflection, above defined by

(Isx)0 = x0; (Isx) = −x.

We have Is
0
0 = 1, but det Is = −1. We see that it maps L↑+ bijectively into L↑−. Together they

form the ortochronous Lorentz group. This is a semidirect product: L↑ = SO0(1, 3) n Z2, for

IsΛ 6= ΛIs in general. Precisely, the product in L↑ is given by

(Is,Λ) · (z,Λ′) = (Isz,ΛIsΛ
′Is),

for z equal to 1 or Is. Analogously for the ortochorous Lorentz group L↑+ ∪ L
↓
−, with the time

inversion operator It
(Itx)0 = −x0; (Itx) = x

being the typical element of L↓−; while the proper Lorentz group SO(1, 3) ≡ L↑+ ∪L
↓
+ is a direct

product. Thus the full or extended Lorentz group has the structure,

L = O(1, 3) = SO(1, 3) n (Z2 × Z2).
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The noninvariance of particle physics under space-reflection and time-reversal teaches us

that the more relevant group is SO0(1, 3) —or more precisely, its double cover Spin0(1, 3). Let

σ := (12,−σ), where σ := (σ1, σ2, σ3) is the set of Pauli matrices in C2×2, let σ̄ := (12,σ) for

good measure, and let

X := (xσ) = x012 + x · σ for x ∈ T4

be the corresponding hermitian matrix in C2×2. It is easily seen that this is a general hermitian

matrix, with x = 1
2 tr

(
σ̄X
)
, and detX = (xx). If A ∈ SL(2,C), we call ΛA its natural image

in SO0(1, 3). That is, ΛAx is the 4-vector corresponding to AXA†:

A(xσ)A† =
(
ΛAxσ

)
; (1.2)

still det
[
A(xσ)A†

]
= (xx), and we see from an exercise below that ΛA

0
0 ≥ 0, so ΛA belongs in

the restricted Lorentz group SO0(1, 3). The map A→ ΛA is extremely important. It is a double

covering; at least it is clear from (1.2) that to A and to −A do correspond the same Lorentz

transformation. Locally the map is one-to-one. It is clearly a group map, so in particular

Λ±A−1 = Λ−1
±A. In conclusion Spin0(1, 3) ' SL(2,C).

In particular, since Aσνx
νA† = σµΛµνxν for all x, it must be AσνA

† = Λµνσµ (omitting A

from the notation ΛA). Analogously,

A†
−1
σ̄νA

−1 = Λµν σ̄µ; AσρA† = (Λ−1)ρλσ
λ; A†

−1
σ̄ρA−1 = (Λ−1)ρλσ̄

λ.

Exercise 1. Work out IsΛIs and ItΛIt explicitly.

Exercise 2. Prove that the product of two ortochronous transformations is orthochronous.

Exercise 3. Consider the following (important) element of SL(2,C):

J :=

(
0 1

−1 0

)
= −J†.

Prove that ΛJ = I1I3, for Ii the reflection with respect to the 3-plane orthogonal to the xi axis.

Exercise 4. Verify that ΛA
µ
ν = 1

2 tr σ̄µAσνA
†.

Exercise 5. * Prove that Spin(1, 3) ' Spin(3, 1). Prove nevertheless that the respective double

covers Pin(1, 3) and Pin(3, 1) of O(1, 3) and O(3, 1) are not isomorphic.

1.2 Rotations and boosts

Typical elements of SO0(1, 3) are the rotations

(t′,x′) =
(
t, cosαx+ (1− cosα)(n · x)n+ sinαn ∧ x

)
=: Rαn x; (1.3)

where n is a unit vector and α is the rotation angle. It is necessary to restrict to 0 ≤ α < π

to obtain a one-to-one assignment between rotations and rotation vectors αn; to obtain all

rotations we must add α = π, but then the same rotation corresponds to n and −n. Note

trRαn = 1 + 2 cosα. If R = (Rjk) = (Rjk) is a (proper) orthogonal matrix, this formula allows

to calculate the rotation angle; note Rjk = −Λjk. Moreover, when α 6= 0, π, the direction

cosines for the axis are obtained from

ni =
−εijkRjk

2 sinα
.
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The associated interpretation to (1.3) is active, if we think of x′,x as the components, with

respect to an orthonormal basis which remains fixed, respectively of the rotated and original

vector. In the passive interpretation, the same formula describes a basis rotated around the

same axis in the opposite sense, with vectors fixed. We thus have

Rx,α =

1

cosα − sinα

sinα cosα

 and Rz,α =

cosα − sinα

sinα cosα

1


for counterclockwise rotations of vectors through an angle α respectively around the coordinate

axis x, z. As well,

Ry,α =

 cosα sinα

1

− sinα cosα

 .

Also typical elements of SO0(1, 3) are the (Lorentz) boosts or special Lorentz transforma-

tions. They describe the situation where two similarly oriented inertial systems whose origins

coincide at t = t′ = 0 move with constant velocity v relative at each other. We consider first

the case in which v = vex. Then y′ = y, z′ = z and (t+ x)(t− x) must be invariant. We must

have

t′ + x′ = f(v)(t+ x); t′ − x′ = 1

f(v)
(t− x),

with f(v) > 0. Consideration of the origin O′ of the primed system gives(
f(v)− 1

f(v)

)
t(O′) +

(
f(v) +

1

f(v)

)
x(O′) = 0; x(O′) = vt(O′),

from which

f2(v)− 1 + v(f2(v) + 1) = 0, that is, f(v) =

√
1− v
1 + v

. (1.4)

Introducing γ = 1√
1−v2 , we conclude(
t′

x′

)
= 1

2

(
f + 1

f(v) f − 1
f(v)

f − 1
f(v) f + 1

f(v)

)(
t

x

)
=

(
γ −γv
−γv γ

)(
t

x

)
, (1.5)

so

Λ(−vex) =: L(−vex) =


γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

 .

This transformation belongs to L↑+. The reason for the minus sign in the notation L(−vex) is

that we adopt for boosts the “active” viewpoint, too. For consider the four-vector (γ, γvex).

We have Λ(−vex)(γ, γvex) = (1,0). Therefore Λ(−vex) transforms something moving at speed

vex into something at rest.

Assume now that v does not point along the direction of the x-axis. We can rotate the

coordinate system so that the new x-axis points along v; perform (1.5); and undo the rotation.

The resulting L(v) will still be symmetric, so we can write

L(−v) =

(
γ −γvk

−γvk T ik

)
,
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with (T ik) symmetric. Now we make the Ansatz T ik = δik + avivk. To compute a, we use

0 = x′(O′) = −γvit+ T ikxk(O′) = −γvit+ T ikvkt.

Therefore 1 + av2 = γ, and a = γ2

γ+1 . Hence

L(v) = L(|v|n) =

(
γ γvk

γvk δik + γ2vivk

γ+1

)
. (1.6)

Write now f(v) = exp(−ζv). Then v = tanh ζ and

L(vex) =


cosh ζ sinh ζ 0 0

sinh ζ cosh ζ 0 0

0 0 1 0

0 0 0 1

 .

Then the formula

(t′,x′) = Lζn(t,x) :=
(
t cosh ζ + (n · x) sinh ζ,x+ (cosh ζ − 1)(n · x)n+ t sin ζn

)
, (1.7)

somewhat in parallel with (1.3), is obtained. In there n is a unit vector again; 0 ≤ ζ < ∞
and the velocity v (with v = |v| < 1) of the boost is given by v = n tanh ζ, so cosh ζ = γ and

cosh ζ − 1 = γ − 1 = γ2v2(γ + 1)−1.

We close this susbection by noting that the distinction between active and passive trans-

formations is particularly pertinent concerning reversals. Space reversals can be passively per-

formed without problems; it is less obvious, although feasible, how to set up space reversals

actively. On the other hand, time reversal can only be realized actively.

Exercise 6. Prove the relation

trR = 1
2 [(trR)2 − trR2]

for rotations R.

Exercise 7. Why is the positive root chosen in (1.4)?

Exercise 8. Prove the linear Doppler effect formula

ν ′ = f(v)ν,

for the frequencies ν, ν ′ of a plane light wave as seen by two inertial reference systems whose

relative speed is v. The wave is traveling parallely to that speed.

Exercise 9. Consider three inertial reference systems S1, S2, S3 moving in parallel. The velocity

of S2 relative to S1 is v1, that of S3 relative to S2 is v2. A particle moves parallely as well with

velocity v with respect to S1. Find its velocity, say u, with respect to S3.

Exercise 10. * Prove the following theorem. Any restricted Lorentz transformation is uniquely

given as the product of a boost and a rotation:

Λ = L(v)R =: L(v)

(
1 0

0 R

)
,

with R ∈ SO(3). Moreover, vi = Λi0/Λ
0
0, and

Rik = Λik −
Λi0Λ0

k

1 + Λ0
0

(1.8)
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Exercise 11. Prove the following assertions. It is always possible to find a frame in which a

timelike vector T has the form (x0,0). The sign of x0 is invariant under L↑+. A (nonzero) vector

orthogonal to t is spacelike. It is always possible to find a frame in which a spacelike vector s

has the form (0, s). A vector orthogonal to s is in general a superposition of a spacelike and

a timelike vector. It is always possible to find a frame in which a null vector l has the form

(k, 0, 0, k). The sign of k is invariant under L↑+. A vector orthogonal to l is a superposition of

a spacelike vector and l itself.

1.3 Some group theory: generalities

The student of this course is assumed familiar with the concepts of Lie group and Lie algebra

theory. It is clear that the infinitesimal generators of the boosts are

K1 :=


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 ; K2 :=


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 ; K3 :=


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 .

We can thus rewrite every Λ ∈ L↑+ as

exp(ζn ·K) exp(αm · J),

and

J1 :=


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 ; J2 :=


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 ; J3 :=


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 ,

for the infinitesimal generators of rotations. It is then easy to see that

[J1,K1] = 0; [J1,K2] = K3; [K1,K2] = −J3,

plus cyclic permutations, constitute the commutation relations for the Lorentz group.

We present a more covariant-looking form. If

xα′ ' xα + λαν x
ν

is an infinitesimal Lorentz transformation, then λαν := gακλ
κ
ν = −λνα. Identifying the trans-

formation parametres with the λαν , one can write

xα′ ' xα + 1
2λκρ(M

κρ)αν x
ν ,

with the Lorentz group generators given by

(Mκρ)µν = gκµgρν − gρµgκν = −(Mρκ)µν . (1.9)

In particular

Ki = M0i, J i = εijkM
jk. (1.10)

The commutation relations are

[Mκρ,Mµν ] = gκµMρν + gρνMκµ − gκνMρµ − gρµMκν .
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In any given representation, the generators will be given by formulae different from (1.9),

which is valid for the vector representation; but the abstract relations (1.10) will be kept, as

well as the integrated formula

U(λ) = exp
(

1
2λκρM

κρ
)
,

with the Mκρ in the appropriate form.

If L1 ' 1 + ζ1K1 + 1
2ζ

2
1K

2
1 , L2 ' 1 + ζ2K2 + 1

2ζ
2
2K

2
2 , then for the group commutator:

L−1
2 L−1

1 L2L1 ' 1− ζ1ζ2[K1,K2] = 1 + ζ1ζ2J3;

this is the (infinitesimal) Wigner rotation —of which more later. Globally, it is obtained as

follows:

L(v1)L(v2) = R(v1,v2)L(v1 ◦ v2); (1.11)

by definition R(v1,v2) is the Wigner rotation and v1 ◦ v2 is precisely the relativistic addition

of velocities. It is R(v,0) = R(−v,v) = Id.

It should be clear that althoughRL(v)R−1 = L(Rv), the Lorentz group is not the semidirect

product of a group of boosts by the group of rotations; actually the (restricted) Lorentz group

is simple, that is, it is a noncommutative group without trivial invariant subgroups. A proof

uses the facts that the rotation group is simple and that L(u) = L(v)L(v) is solvable for v. We

go not into that yet.

1.4 Poincaré adjoint and coadjoint actions

Quantum free particle (pure) states are the quantum elementary systems, given by the unirreps

of P. Our intuition of them is powerfully served by considering first classical elementary systems,

which are orbits of the dual adjoint action of P on the linear dual of its Lie algebra.

Denote by P0 = T4 n L↑+ = T4 n SO0(3, 1), the proper orthochronous Poincaré group. We

work with its simply connected double cover P̃0 := T4nSL(2,C). (This ensures that only linear

representations need be considered.) The product on P̃0 obeys

(a,A) · (a′, A′) = (a+ ΛAa
′, AA′) for a ∈ T4, A ∈ SL(2,C). (1.12)

The Lie algebra p of P̃0 (or of P0 or P) is generated by ten elements H,P i, J i,Ki (for

i = 1, 2, 3) corresponding respectively to time translations, space translations, and the rotations

and pure boosts of the Lorentz subgroup. We write elements of P̃0 in a standard form

g = exp(−a0H + a · P ) exp(ζn ·K) exp(αm · J),

where a ∈ T4, n and m are unit 3-vectors, ζ ≥ 0 and 0 ≤ α ≤ 2π, with the understanding that

exp(2πm · J) = −12 in SL(2,C) for all m. The full nonvanishing commutation relations for

the generators:

[J i, J j ] = εijkJ
k, [J i,Kj ] = εijkK

k, [J i, P j ] = εijkP
k,

[Ki,Kj ] = −εijkJk, [Ki, P j ] = δijH, [Ki, H] = P i (1.13)
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Table 1: The adjoint action Ad(expX)Y

X/Y −a0H a · P αm · J ζn ·K

H H H H (cosh ζ)H + (sinh ζ)n · P
P P P R−1

αmP P + (sinh ζ)Hn+ (cosh ζ − 1)(n · P )n

J J J − a× P R−1
αmJ (cosh ζ)J − (sinh ζ)n×K − (cosh ζ − 1)(n · J)n

K K + a0P K −Ha R−1
αmK (cosh ζ)K + (sinh ζ)n× J − (cosh ζ − 1)(n ·K)n

are obtained from K = 1
2σ, J = − i

2σ. It ensues:

exp(ζn ·K) = cosh
ζ

2
+ sinh

ζ

2
n · σ =

(
cosh ζ

2 + n3 sinh ζ
2 (n1 − in2) sinh ζ

2

(n1 + in2) sinh ζ
2 cosh ζ

2 − n3 sinh ζ
2

)
,

exp(αm · J) = cos
α

2
− i sin

α

2
m · σ =

(
cos α2 − im3 sin α

2 (−im1 −m2) sin α
2

(−im1 +m2) sin α
2 cos α2 + im3 sin α

2

)
. (1.14)

The adjoint action of P̃0 on p is computed as follows. Writing ad(X)Y := [X,Y ] forX,Y ∈ p,

we have Ad(expX)Y = ead(X)Y = Y + [X,Y ] + 1
2! [X, [X,Y ]] + · · · . From this it is easy to find

Ad(expX)Y whenever X = −a0H, a · P , αm · J or ζn ·K, and Y = H, P i, J i or Ki. For

instance, if X = ζn ·K, Y = H, then

Ad( exp(ζn ·K))H

= H + ζ[n ·K, H] +
ζ2

2!
[n ·K, [n ·K, H]] +

ζ3

3!
[n ·K, [n ·K, [n ·K, H]]] + · · ·

= H + ζn · P +
ζ2

2!
H +

ζ3

3!
n · P + · · · = (cosh ζ)H + (sinh ζ)n · P .

In this way one obtains Table 1, exhibiting the adjoint action of P̃0 in a fully explicit manner [1].

(We write ΛA = Rαm for the rotation obtained from A = exp(αm · J) ∈ SU(2).)

The coadjoint action of P̃0 on the Lie coalgebra p∗ is he contragredient of the adjoint

representation, namely, if 〈u,X〉 := u(X) for u ∈ p∗, X ∈ p, then

〈Coad(g)u,X〉 := 〈u,Ad(g−1)X〉.

It can now be derived immediately. Let h be the linear coordinate on p∗ associated to H, and

similarly let pi, ji, ki be the coordinates associated to P i, J i,Ki (i = 1, 2, 3). The action is given

in these coordinates by Table 2.

Exercise 12. Verify formulas (1.14), using (σy)(σz) = (σw), where w = (y0z0 + y · z, y0z +

z0y + iy ∧ z).

Exercise 13. Consider X(h,p) = h12 + p · σ. Note that the coadjoint action is given simply by

X(h,p) 7→ A†
−1
X(h,p)A

−1, (1.15)

for any g = (a,A). For instance, prove the following.(
cos α2 − im3 sin α

2 (−im1 −m2) sin α
2

(−im1 +m2) sin α
2 cos α2 + im3 sin α

2

)
X(h,p)

(
cos α2 + im3 sin α

2 (im1 +m2) sin α
2

(im1 −m2) sin α
2 cos α2 − im3 sin α

2

)
= h12 +

(
(cosα)p+ (sinα)m× p+ (1− cosα)(m · p)m

)
· σ = X(h,Rαmp);
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Table 2: The coadjoint action Coad(expX)y

X/y −a0H a · P αm · J ζn ·K

h h h h (cosh ζ)h− (sinh ζ)n · p
p p p Rαm p p− (sinh ζ)hn+ (cosh ζ − 1)(n · p)n

j j j + a× p Rαm j (cosh ζ)j + (sinh ζ)n× k − (cosh ζ − 1)(n · j)n
k k − a0p k + ha Rαm k (cosh ζ)k − (sinh ζ)n× j − (cosh ζ − 1)(n · k)n

as well as(
cosh ζ

2 − n3 sinh ζ
2 −(n1 − in2) sinh ζ

2

−(n1 + in2) sinh ζ
2 cosh ζ

2 + n3 sinh ζ
2

)
X(h,p)

(
cosh ζ

2 − n3 sinh ζ
2 −(n1 − in2) sinh ζ

2

−(n1 + in2) sinh ζ
2 cosh ζ

2 + n3 sinh ζ
2

)
=
(
(cosh ζ)h− (sinh ζ)n · p

)
12 +

(
p− (sinh ζ)hn+ (cosh ζ − 1)(n · p)n

)
· σ = Xeζn·K(h,p).

(It is natural that if A acts on configuration space by ΛAx, it act contragrediently by Λ
A†−1 on

momentum.)

2 Theory of free one-particle states*

2.1 Classical relativistic elementary systems

Classical elementary systems are orbits of the coadjoint action of a dynamical group on the linear

dual of its Lie algebra. Those orbits arise in the present context as level sets of two “Casimir

functions” C1, C2 on p∗. We obtain them explicitly. Let p = (h,p) be the “energy-momentum”

4-vector and w = (w0,w) the “Pauli–Lubański” 4-vector, given by

w0 = j · p; w = p× k + hj. (2.1)

From Table 2, one verifies that w0 transforms like h and w like p under the coadjoint action;

in particular, under Coad
(
exp(ζn ·K)

)
:

w0 7→ (cosh ζ)w0 − (sinh ζ)n ·w,
w 7→ w − (sinh ζ)w0n+ (cosh ζ − 1)(n ·w)n.

It is easily checked that p and w are orthogonal in the Minkowski sense: (pw) = 0. Thus the

Casimir functions we seek are

C1 := (pp) = h2 − |p|2, C2 := (ww) = (j · p)2 − |p× k + hj|2.

We now look for orbits corresponding to physical particles, starting by the massive case.

So we restrict ourselves to orbits for which C1 < 0, writing C1 = m2 with m > 0, and h =√
m2 + |p|2 > 0. Let κ := (m,0) be the vertex of the forward hyperboloid p2 = m2, p0 > 0.

Consider the Lorentz boost Lu which takes p to κ or u := p/m to (1, 0). We have 0 =

(pw) = (LupLuw) = (κLuw), which means that Luw = (0,ms) for some 3-vector s. Since
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C2 = (ww) = (LuwLuw) = m2|s|2 is constant on any orbit, one interprets s as the spin

vector —which thus is intrinsically spacelike. From (0,ms) = Luw, it yields:

s =
w

m
− 1

m

(
w0

m
− p ·w
m(h+m)

)
p =

w

m
− w0p

m(h+m)
. (2.2)

For fixed m and s and positive h, we obtain a single orbit Oms+. If s > 0, we may take as

coordinates on Oms+ the momenta p and spherical coordinates arising from s; three coordinates

remain to be determined. A possible choice is q, given by

q :=
k

h
− p×w
mh(m+ h)

=
k

h
− p× s
h(m+ h)

. (2.3)

So the coadjoint orbit Oms+ is homeomorphic to R6 × S2 —with “little group” R× SO(2). By

general theory, the Poisson bracket on the codajoint orbit is given by

{f, g} = ckij
∂f

∂xi

∂g

∂xj
xk, (2.4)

where ckij denote the structure constants of the Lie algebra. Using this together with (1.13), one

can check that { qi, pi } are (part of a set of) canonical coordinates. It follows that d3q d3p ds is a

Liouville measure on Oms+. The case s = 0 gives a 6-dimensional orbit Om0+, isomorphic to R6.

From (2.1) the expressions of the p coordinates (h,p, j,k) in terms of the Oms+ coordinates

(q,p, s) over the orbit are:

w0 = p · s, w = ms+
p · s
m+ h

p,

j = q × p+ s, k = hq +
p× s
m+ h

. (2.5)

Now we can recover from Table 2 the expression of the coadjoint action of P̃0 on the orbit in

terms of the coordinates (p, q). There is no need to rewrite the action on p. We readily obtain:

exp(−a0H) . q = q − a0p

h

exp(a · P ) . q = q + a (2.6)

exp(αm · J) . q = Rαmq.

These Euclidean transformation rules conform to our intuition as to how a relativistic particle

should behave. Nevertheless, contrary to the momentum representation, the issue of position

variables and position representation is a complicated one in relativistic quantum mechanics.

For instance, q does not behave covariantly under boosts when s > 0.

Exercise 14. Show that expression (2.1) is given in covariant form by Wσ = 1
2εσµνλM

µνP λ,

with ε0123 = −1.

Exercise 15. Write Lu explicitly and show that its relation to Coad
(

exp(ζn ·K)
)

is given by

n =
−u
|u|

=
−u√

(u0)2 − 1
; ζ = cosh−1(u0).

Exercise 16. Prove

{ si, sj } = εijk s
k,

from the general formula (2.4).
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2.1.1 Position coordinates in the massive case

Besides q there are other interesting position variables. For instance, for massive particles one

can always find a covariant coordinate vector, fulfilling like q Euclidean transformation rules,

but coinciding with the canonical coordinate vector only for the spinless case. This is of the

form:

x =
k

h
− w × s

m2h
=
k

h
− p× s

mh
= q − p× s

m(m+ h)
.

Covariance means the rule of transformation of the initial coordinates for free motion on

changing from one Lorentz frame to another given rise the relativistic transformation rule

for such motion. That is to say, if x(t) = x + pt/h; x′(t′) = x′ + p′t′/h′, together with

t′ = t cosh ζ − (sinh ζ)x(t) · n, then one can show indeed

x′(t′) = x(t)− t(sinh ζ)n+ (cosh ζ − 1)(n · x(t))n. (2.7)

We shall soon see that for massless particles (with non-vanishing helicity) we can have neither

canonical nor covariant coordinates. It is therefore astute to seek already a position vector with

good limit properties as m ↓ 0. Such coordinates X are provided by

X :=
k

h
+

p×w
h2(m+ h)

= q +
p× s
h2

.

In terms of the (X,p, s) coordinates, we have now:

j = X × p+ s
m2

h2
+ p

p · s
h2

; k = hX −m p× s
h(m+ h)

. (2.8)

Exercise 17. Compute the Poisson brackets {Xi, Xj}.
Exercise 18. Prove that (2.6) holds for X.

2.1.2 Wigner rotations

Next we describe the coadjoint action on spin. Unsurpringly, we have:

exp(−a0H) . s = s, exp(a · P ) . s = s,

exp(αm · J) . s = Rαms. (2.9)

The action under boosts B .s ≡ exp(ζn ·K) .s is more complicated. Indeed, if w′ = Bw, then

(0,ms′) = LBuw
′ = LBuBw = LBuBL

−1
u (0,ms). So we have

B . s = LBuBL
−1
u s = RW (B, u)s.

The Lorentz group element RW (B, u) must be the a rotation: to wit, the famous Wigner

(Thomas) rotation corresponding to B and u. In view of (2.9) this generalizes in the obvious

way to any Lorentz transformation at the place of B. See [2] for a timely reminder on Wigner

rotations. Note the kinship with definition (1.11).

A detailed discussion of RW serves our purposes. The spin’s axis of rotation is given by

p× n, if B is a boost in the direction of n: when the boost B is parallel to the momentum p,

there is no Wigner rotation. With m = p×n
|p×n| , one has [1]:

s′ = RWs = Rδms = cos δ s+ sin δm× s+ (1− cos δ)(m · s)m,

where sin δ =
sin ζ(m+ h)− (cosh ζ − 1)(p · n)

(m+ h)(m+ h′)
|p× n|.
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A key point is that (although not all the factors in its definition) the Wigner rotation formula

makes perfect sense for m = 0, namely:

sin δ =
h sin ζ − (cosh ζ − 1)(p · n)

hh′
|p× n|, (2.10)

keeping in mind that in this case h = |p|, h′ = |p′|. Meanwhile the momentum under B also

turns around p× n. This is true in all generality: from the coadjoint action

p′ = p− (sinh ζ)hn+ (cosh ζ − 1)(n · p)n

we have

p′ × p =
[
h sinh ζ − (cosh ζ − 1)(p · n)

]
p× n;

therefore the component of p′ not along p stays on the plane perpendicular to p×n. Now, we

compute the angle:

|p′ × p|
|p||p′|

=
h sinh ζ − (cosh ζ − 1)(p · n)

|p||p′|
|p× n|.

This is in general bigger than the Wigner angle; but clearly in the massless limit —so h = |p|—
momentum and spin turn in perfect solidarity.

2.1.3 The massless case

We next look for the orbits corresponding to massless particles, determined by C1 = 0. Clearly

p ∈ R3 \0 (the origin is an orbit). We consider the case h > 0 and make the critical assumption

that w is parallel to p, that is w = λp with λ ∈ R. Taking the limit as m ↓ 0 in (2.8), also on

account of (2.1), everything is determined:

p = p, |p| = h, j = X × p+ λ
p

h
, k = hX. (2.11)

Here the helicity λ = j · p/h is the projection of the total angular momentum j on the

momentum; this is what remains of the spin in the massless case. The orbit Oλ is therefore

six-dimensional, and isomorphic to R3 × (R3 \ 0) ' R3 ×R× S2. This non-trivial topology has

some non-trivial consequences. Observe that we have got rid of expressions in terms of s: it

ought to be possible to do so, since the orbit is only six-dimensional.

Hence, in view of (1.13):

{pi, Xj} = {pi, h−1kj} = h−1{pi, kj} = −δij . (2.12)

On the other hand,

{Xi, Xj} = {h−1ki, h−1kj} = h−2{ki, kj}+ h−1kj{ki, h−1}+ h−1ki{h−1, kj}

= h−2(−εijkjk −Xjpi +Xipj) = −λε
ij
kp
k

h3
; (2.13)

so these are not canonical coordinates, unless λ = 0.

There are other coadjoint orbits, seemingly not correspondig to physical objects.

Exercise 19. Show by direct computation that the Poisson brackets of the helicity with all the

other phase space variables vanish.
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2.2 The massive unirreps of P

In quantum mechanics the basis vectors of a physical Hilbert space H are always labeled by

the (maybe generalized) eigenvalues of (a complete set of) commuting observables. Different

observables mean different sets of basis vectors, related by unitary transformations (or “Clebsch–

Gordan” expansions). Particularly important in particle physics are plane wave (generalized)

eigenstates of momentum and the angular momentum states (of sundry kinds). The explicit

form of those transformations depends on phase conventions, so the utmost care ought to be

exercised in comparing extant results in the literature.

The classification of quantum 1-particle states is one and the same thing that the theory of

unirreps of the Poincaré group. These are denoted by U(a,A) with U(0, A) = exp(−iα · J) and

U(0, A) = exp(−iζ ·K) respectively for rotations and boosts, as well as U(a0, 1) = exp(−ia0H)

and U(a, 1) = exp(ia · P), where the infinitesimal operators J, K,H, P are now self-adjoint

operators on H. In covariant notation,

U(a, 1) = e−i(Pa); U(0, A) = e−i(αM) := exp
(
−iαµνMµν

)
.

One has now the commutation relations:

[Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk, [Ji,Pj ] = iεijkPk,
[Ki,Kj ] = −iεijkJk, [Ki,Pj ] = iδijH, [Ki,H] = iPi.

The unirreps are characterized by the values of two invariants or Casimir operators which are

the exact analogues of the classical entities studied in the first part of this section: (PP) and

(WW), related to the rest mass and spin. The latter is invoked as follows. Analogously to (1.10)

we introduce

M0i := Ki, Ji = εijkMjk, and Wσ = 1
2εσµνλM

µνPλ.

Then one finds

[Pµ,Wσ] = 0; [Mµν ,Wσ] = i(Wµgνσ −Wνgµσ); [Wλ,Wσ] = iελσµνWµPν . (2.14)

Finally, one checks that (WW) commutes with all the generators. The spin operator, with the

well-known commutattion relations and eigenvalues, is just W in the rest system; formula (2.2)

applies mutatis mutandis. As before, we consider first

(PP) = m2 > 0; (WW) = −m2 s(s+ 1).

Given a state of a particle, irreducibility implies that any other possible state is obtained

by means of Poincaré transformations acting on the original state vector. Thus consider a

massive particle with spin at rest. Here (PP), (WW), P, J3 form a complete set of quantum

observables. There are 2s + 1 independent states corresponding to the third component of

the angular momentum operator, so we have the (improper) kets |η = 0, r〉[m,j] = |κ, r〉, with

r = −j,−j+1, . . . , j, spanning a 2j+1-dimensional unirrep of SU(2). Often the subscript [m.j]

identifying the unirreps will be omitted. We suppose the reader acquainted with the theory of

angular momentum in quantum mechanics and its notations. In particular, we admit

exp(−iα · J)|η = 0, r〉 =

j∑
r′=−j

D
(j)
r′r(α)|η = 0, r′〉.
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We proceed to define now states in motion. Let ϕ, ϑ be the polar angles of η and consider

the rotation

R(ϕ, ϑ, 0) = exp(−iJ3ϕ) exp(−iJ2ϑ),

taking the z-axis to the direction of η, as well as the boost exp(−iK3v), with v = tanh
(
|η|/η0

)
.

We may for instance introduce the following two states:

|η, r〉 := R(ϕ, ϑ, 0) exp(−iK3v)R−1(ϕ, ϑ, 0)|η = 0, r〉;
|η, λ〉 := R(ϕ, ϑ, 0) exp(−iK3v)|η = 0, r〉. (2.15)

The last definition is not good for ϕ = π, whereupon one uses

|0, π, |η|, λ〉 = e−iπjR(π, π, 0) exp(−iK3v)|η = 0, r〉.

The second one is an helicity state, since it is an eigenvector of J · P/|P|. The vectors are

normalized by

〈η, r | η′, r′〉 = 2η0 δrr′δ(η − η′); 〈η, λ | η′, λ′〉 = 2η0 δλλ′δ(η − η′). (2.16)

To show the consistency of the method, we perform a little calculation. We expect physically

P1|η, λ〉 = |η| sinϑ cosϕ|η, λ〉. (2.17)

Now we have

P1|η, λ〉 := P1R(ϕ, ϑ, 0) exp(−iK3v)|η = 0, r〉 = exp(−iJ3ϕ) exp(−iJ2ϑ) exp(−iK3v)

× exp(iK3v) exp(iJ2ϑ) exp(iJ3ϕ)P1 exp(−iJ3ϕ) exp(−iJ2ϑ) exp(−iK3v)|η = 0, r〉
= exp(−iJ3ϕ) exp(−iJ2ϑ) exp(−iK3v) exp(iK3v) exp(iJ2ϑ)

(
P1 cosϕ− P2 sinϕ

)
× exp(−iJ2ϑ) exp(−iK3v)|η = 0, r〉 = exp(−iJ3ϕ) exp(−iJ2ϑ) exp(−iK3v)

×
(
P0 sinϑ cosϕ sinhu+ P1 cosϑ cosϕ− P2 sinϕ+ P3 sinϑ cosϕ coshu

)
|η = 0, r〉.

The rest is easy.

Exercise 20. * Check that W2 = (WW) is a Casimir.

Exercise 21. Verify equations (2.14).

Exercise 22. Finish the proof of (2.17).

For a massive particle, instead of (2.15) we may introduce (Wigner basis) states by

|η, r〉 := Lη/m|η = 0, r〉;

it is then not hard to see that

U(Λ)|η, r〉[m,j] =

j∑
r′=−j

D
(j)
r′r

(
RW (Λ, η/m)

)
|η = 0, r′〉|Λη, r′〉[m,j],

where the Wigner rotation RW (Λ, η/m) slightly generalizes the previous case in which Λ was a

boost.

We turn to the helicity basis (essential for massless particle states, studied later, and very

useful for particle decay problems). Begin by a particle at rest, whose z-component of spin
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is λ, described by |0, λ〉[m,j]. Given η, we set that particle in motion in the z-direction with

momentum of magnitude |η|. We denote

||η|ez, λ〉 := U
(
L|η|ez/m

)
|η = 0, λ〉;

Next this state is rotated so that the momentum is η; then the helicity does not change —it is

a (pseudo)scalar. We set

|η, λ〉 := U
(
Rη,|η|ez

)
||η|ez, λ〉 =

∑
r

|η, r〉D(j)
rλ

(
L−1
η/mRη|,η|ezL|η|ez/m

)
and obtain

U(Λ)|η, λ〉 =
∑
r

|Λη, r〉D(j)
rλ

(
L−1

Λη/mΛRη|,η|ezL|η|ez/m
)

=
∑
rs

|Λη, r〉D(j)
rs

(
L−1

Λη/mRη|,η|ezL|η|ez/m
)
D

(j)
sλ

(
L−1
|η|ez/mR

−1
η|,η|ezΛRη|,η|ezL|η|ez/m

)
=:
∑
µ

|Λη, µ〉D(j)
µλ

(
L−1
|η|ez/mR

−1
η|,η|ezΛRη|,η|ezL|η|ez/m

)
=
∑
µ

|Λη, µ〉D(j)
µλ

(
R−1
η|,η|ezL

−1
Λη/mΛLη/mRη|,η|ez |

)
.

In the last equality we have used that a boost in a given direction followed by a rotation can

be replaced by the rotation and then the boost to the final momentum. In the end,

U(Λ)|η, λ〉 =
∑
µ

|Λη, µ〉D(j)
µλ

(
R−1
η|,η|ezRW (Λ, η/m)Rη|,η|ez |

)
.

These relations are of interest to develop the relativistic version of angular momentum addition.

A two-particle state given by the product of two states transforms like a reducible representation

of the Poincaré group. It can be reduced to a sum of irreps, characterized by a mass M2 ≡
(η1 + η2)2 and a total angular momentum made up by the addition of spins and orbital angular

momentum, that serves as degeneracy parameter.

It is high time to come back to the description of the representation space and the concrete

actions of the generators on it. From (2.16) we see that Wigner’s canonical representation for

massive relativistic particles lives on Hilbert spaces Hm spanned by the kets |η, r〉[m,j], with the

vector η resting on the forward mass hyperboloid H+
m and r = −j,−j + 1, . . . , j, subject to the

covariant closure and orthogonality relations∑
r

∫
H+
m

|η, r〉〈η, r| d
3η

2η0
= I

(
η0 =

√
m2 + |η|2

)
;

〈η, r | η′, r′〉 = 2η0 δrr′δ(η − η′). (2.18)

The Weyl system generators Q,P,S are selfadjoint operators with non-vanishing commutation

relations [Qi,Pj ] = δij , [Si,Sj ] = iεijk S
k. In the chosen (momentum) representation they are

given by

P = η; Q = i
∂

∂η
− i η

2|η|2
;

plus the standard hermitian spin matrices vector. The other generators of the group are repre-

sented as follows:

H = η0 :=
√
m2 + P2; J = Q× P + S; K = i

2 [H,Q]+ +
P× S
m+ H

. (2.19)
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Note Q = 1
2 [H−1,K]+. Formula (2.18) says that the scalar product is explicitly given by

〈Ψ | Φ〉 =
∑∫

Ψ̄(η)Φ(η)
d3η

2η0
,

with sum over the 2j + 1 components understood. We may use instead use a “wave function”

in configuration space,

Ψ(x) = (2π)−3/2

∫
Ψ(η)e−i(ηx) d4η = (2π)−3/2

∫
Ψ(Eη,η)ei(η·x−Eηt)

d3η

2η0
.

Then clearly the Klein–Gordon (KG) equation is satisfied by Ψ(x):

(� +m2)Ψ(x) = 0. (2.20)

2.2.1 Massless representations

The identity (PµWµ) = 0 is obvious. For a zero mass particle, there is no rest system, and it is

inveterate custom to take as standard state Φ0 the one characterized by momentum (η0, 0, 0, η0).

This can be reached by a simple rotation. We have then η0(W3−W0)Φ0 = 0, plus the commu-

tation relations

[W1,W2]Φ0 = 0; [W3,W1]Φ0 = iη0W2Φ0; [W3,W2]Φ0 = −iη0W1Φ0.

These are the commutation relations of the Euclidean group, with W3 as the generator of

rotations. We give to the Casimir W2
1 + W2

2 the value zero. Therefore, for all massless states,

W ∝ P, so that Wµ = −λPµ,

where the constant λ is the helicity. Note that we have

λ = −(Wn)

(Pn)
,

for n an arbitrary vector. Taking n = (1, 0, 0, 0), we obtain

λ =
J · P
|P|

.

We have verified in the quantum context that λ is the component of the total angular momentum

along the direction of motion.

Now, the effect of a 2π-rotation about the direction of motion is to multiply the state vector

by e2πiλ. Thus λ must be a half-integer. A zero-mass state is described by a single component;

a doubling of states takes place when, depending on interactions, parity transformations are

allowed, changing the sign of the helicity.

3 The free neutral scalar field

It would seem natural to associate elementary particles with unirreps of the Poincaré group.

Life is more complicated, however. In practice, Nature seems to love (covariant) differential

equations like (2.20), while the representations given by (2.19) are almost never used. Beyond
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the KG equation, that all free systems satisfy, the solution spaces for other “evolution equa-

tions”, like the famous Dirac equation, resolve themselves in several invariant subspaces. The

representation theory viewpoint should not be too stressed in QFT, which after all tries to

grapple with interacting systems, and many particles at a time.

The free neutral scalar field is a quantum object satisfying (2.20). We first focus on the

equation itself, as a classical one, and then we turn to its meaning in QFT.

3.1 The space of solutions

Let M denote a submanifold of R4. Twice integrating by parts yields∫
M
φ1(� +m2)φ2 d

4x =

∫
M
φ2(� +m2)φ1 d

4x+

∫
M

div j(φ1, φ2) d4x,

where the vector field j is given by

jµ(φ1, φ2) = φ1∂µφ2 − ∂µφ1φ2 =: φ1
←→
∂µφ2.

Therefore if both φ1 and φ2 solve the KG equation, we have

∂µjµ(φ1, φ2) = 0.

As a consequence, if Σ is a Cauchy hypersurface, and v1, v2 are solutions of the KG equation

vanishing rapidly enough at “spatial infinity”, by the divergence theorem the integral

s(v1, v2) :=

∫
Σ
jµ(v1, v2) dσµ =

∫
Σ
v1
←→
∂µv2 dσ

µ

does not depend on Σ itself, and defines a symplectic (skewsymmetric, nondegenerate) form on

the space V of solutions of the KG equation.

Up to multiples, s is the only Poincaré invariant symplectic form on V . The symplectic

space (V, s) we take as our the 1-particle phase space, the starting point for quantization.

3.2 The Cauchy problem

Note that the KG equation is of the second order in t, so one must give two conditions for solving

the Cauchy (initial value) problem for it: the values of the solution and its time derivative at

a suitable spacelike surface, say t = 0. The so-called Jordan–Pauli function or commutator

function D ≡ DJP solves this Cauchy problem. By definition, with E(p) =
√
m2 + |p|2,

D(x− x′) :=
1

(2π)3

∫
eip·(x−x

′) sinE(p)(t− t′)
E(p)

d3p, (3.1)

which is then the integral kernel on R3 of sinω(t − t′)/ω, a solution of the KG equation

characterized by D(0,x) = 0 and ∂tD(t,x)|t=0 = δ(x) —thus solving the Cauchy problem

for it.

Proof. Indeed, denoting ω2 = m2 −∆, we can rewrite the KG equation as

d

dt

(
v

g

)
=

(
0 1

−ω2 0

)(
v

g

)
=: A

(
v

g

)
.
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The (entirely rigorous) solution of this equation with Cauchy data f(x) ≡ v(0,x), h(x) ≡
g(0,x) is: (

v(t,x)

g(t,x)

)
= exp(At)

(
v(0,x)

g(0,x)

)
=

(
[cos(ωt)f ](x) + [ω−1 sin(ωt)h](x)

[−ω sin(ωt)f ](x) + [cos(ωt)h](x)

)
. (3.2)

In view of the fact that on momentum space the operator ω is given by multiplication by E(p),

it is clear that D is the representation of the operator −ω−1 sinωt as an integral kernel on

configuration 3-space.

A more elegant form of the spectral representation (3.1) is

D(x) =
i

(2π)3

∫
sgn(p0)δ(p2 −m2)e−i(px) d4p. (3.3)

To see that this coincides with (3.1), just note that

δ(p2 −m2) = δ
(
p2

0 − E2(p)
)

=
δ
(
p0 − E(p)

)
2E(p)

+
δ
(
p0 + E(p)

)
2E(p)

=: δ+(p2 −m2) + δ−(p2 −m2).

As a consequence of D(0,x) = 0 and Lorentz invariance we have that the propagator D(x)

vanishes for any spacelike argument. Note moreover ∂2D(x)
∂t2

∣∣
t=0

= 0. It is instructive to check

all this on the explicit expression

D(x− x′) = sgn(t− t′)
δ
(
(x− x′)2

)
2π

, (3.4)

when m = 0.

If we are given a differential operator L, acting on functions on spacetime, and if we know

the solution K(x, x′) of the inhomogeneous problem

LK(x, x′) = δ4(x− x′),

then the solution of the inhomogeneous problem with source ρ, namely Lφ(x) = ρ(x), is in

principle afforded by

φ(x) = φh(x) +

∫
K(x, x′)ρ(x′) d4x′,

where φh is a solution of the homogeneous equation Lφ(x) = 0, perhaps further determined by

boundary conditions. Then K(x, x′) is called a propagator or proper Green function for L.

Let now K be a solution of the homogeneous equation (such as D):(
� +m2

)
K(x) = 0,

fulfilling the conditions

lim
t→0+

K(x, t) = 0 together with lim
t→0+

∂K(x, t)

∂t
= δ(x).

Then we claim that H(t)K(x) is a proper Green function. For the proof:

�
[
H(t)K(x)

]
=

∂

∂t

[
H(t)

∂K(x)

∂t
+ δ(t)K(x)

]
−H(t)∆K(x).
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Because K solves the homogeneous equation, we have to prove

2δ(t)
∂K(x)

∂t
+ δ′(t)K(x) = δ4(x).

Indeed: from δ(t)f(t) = δ(t)f(0), δ′(t)f(t) = δ′(t)f(0) − δ(t)f ′(0), plus the initial conditions,

the result follows. On the other hand, the difference between two propagators satisfies the

homogeneous equation. In our case K is D and H(t)K(x) is called Dret, and then

D(x− x′) = Dret(x− x′)−Dadv(x− x′),

where both Dret and Dadv are propagators. The solutions of the homogeneous equation are

often called improper Green functions, or even loosely propagators as well.

The first row in the display (3.2), giving the solution of the Cauchy problem for the KG

equation with initial conditions v(0,y) and g(0,y) := ∂v(t,y)
∂t

∣∣
t=0

as

v(t,x) =

∫
R3

(
D(t,x, 0,y)g(0,y)− v(0,y)

∂

∂s

∣∣∣
s=0

D(t,x; s,y)
)
d3y.

Notice that v so given can be directly seen to satisfy (� +m2)v = 0 and the initial conditions.

The solution is unique because the difference of two solutions would be a solution vanishing

together with its derivative on t = 0, and therefore vanishing everywhere. By a standard

argument, using the fact that D solves the wave equation, the hyperplane s = 0 in Minkowski

space M4 can be replaced by any suitable spacelike hypersurface Σ. One obtains:

v(x) =

∫
Σ

[D(x, y)∂ρv(y)− v(y)∂ρyD(x, y)] dσρ(y).

Invoking the symplectic form s, this we rewrite as

v(x) = s
(
D(x, .), v(.)

)
,

or even more abbreviately v = s(D, v). This means that D acts as a “reproducing kernel”. In

particular:

D(x, y) = s
(
D(x, ·), D(·, y)

)
.

3.3 More improper and proper Green functions

We need as well the following distributions (sometimes called Wightman functions):

• The D+-function:

D+(x) :=
1

(2π)4

∫
C+

e−i(px)

p2 −m2
d4p =

i

(2π)3

∫
δ+(p2 −m2) e−i(px) d4p

=
i

(2π)3

∫
e−iE(p)t+ip·x

2E(p)
d3p. (3.5)

The circuit C+ turns counterclockwise around the pole at <p0 > 0 only. Indeed, by

der Residuensatz,

1

2π

∫
C+

e−ip
0t

p2 −m2
dp0 = 2πi

(
Res

∣∣
p0=E

1

2π

e−i(p
0t)

p2 −m2

)
=
i e−iE(p)t

2E(p)
.

20



• The D−-function

D−(x) :=
1

(2π)4

∫
C−

e−i(px)

p2 −m2
d4p =

i

(2π)3

∫
eiE(p)t+ip·x

2E(p)
d3p

=
i

(2π)3

∫
δ−(p2 −m2) e−i(px) d4p.

The circuit C− now runs clockwise around the pole at <p0 < 0 only. Der Residuensatz

yields now:

1

2π

∫
C−

eip
0t

p2 −m2
dp0 = −2πi

(
Res

∣∣
p0=−E

1

2π

e−i(p
0t)

p2 −m2

)
=
i eiE(p)t

2E(p)
.

• Thus for the already known commutator function:

D(x) = D+(x)−D−(x) =
1

(2π)4

∫
C

ei(px)

p2 −m2
d4p.

Here C turns counterclockwise around both poles in the complex p0-plane.

Unfortunately, no firm conventions exist on these and similar definitions. We juggle the sundry

fourth roots of unit to adapt our notations so that [3, Formulae II.1.10-11] (essentially) hold.

−E E

C+C−

−E E

C
•• ••

Figure 1: Closed integration contours in the complex p0-plane

On sees that D±(x) = D∓(−x) = −D∗∓(x) and D = ±2<D±. Now D(x) = −D(−x), which

by Lorentz invariance implies that D vanishes on spacelike separations, that is, it has support

in the (closed) lightcone. We see that

Dret,adv(x) = ±H(±t)D(x) = ±H(±t)
(
D+(x)−D−(x)

)
.

We have for those propagators

Dret(x) =
1

(2π)4

∫
Cr

e−i(px)

p2 −m2
d4p; Dadv(x) =

1

(2π)4

∫
Ca

e−i(px)

p2 −m2
d4p.

Here the contour Cr, Ca respectively passes the poles in the complex p0 plane on its left and right.

By the same token,

D̄(x) := 1
2

(
Dret(x) +Dadv(x)

)
= 1

2 sgn(t)D(x)

runs through the poles.

We pause to indicate that in physics, one is interested in the “asymptotic Cauchy problem”,

in which the Cauchy data are chosen on the surfaces t = −∞ and t = ∞. Let us denote
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the corresponding solutions of the homogeneous equation by fin, fout, respectively. Then the

solution of the inhomogeneous equation with Lagrangian coupling Φ2A (details forthcoming) is

written using the interpolating function

f(x) = fin(x) +Dret ∗A ∗ f(x) = fout(x) +Dadv ∗A ∗ f(x),

which implies:

fout(x) =
(
1−Dadv ∗A

)(
1−Dret ∗A

)−1 ∗ fin(x) =: Sclfin(x),

where Scl so defined is the classical scattering matrix. It amounts to a symplectic transformation

of V .

Also, and foremost, the Stückelberg–Feynman propagator

DF (x) = H(t)D+(x) +H(−t)D−(x) = Dret(x) +D−(x) = Dadv(x) +D+(x).

We check

Dret(x) +D−(x) = H(t)D+(x)−H(t)D−(x) +D−(x) = H(t)D+(x) +H(−t)D−(x).

It holds

DF (x) =
1

(2π)4

∫
e−i(px) d4p

p2 −m2 − iε
.

One can define as well a Dyson propagator DF̄ , corresponding to a contour that runs over the

pole with positive real part and below the other pole:

DF̄ (x) =
1

(2π)4

∫
e−i(px) d4p

p2 −m2 + iε
= −H(−t)D+(x)−H(t)D−(x)

= Dret(x)−D+(x) = Dadv(x)−D−(x) = D†F (x).

The last statement in the sense of integral operators. A prodigious aspect of Feynman and

Dyson propagators is the freedom to rotate the contour to the imaginary axis without crossing

any of the poles (“Wick rotation”); that allows computing them by integrals on Euclidean

space. Also D̄ = <DF : historically, this is the link between the Wheeler–Feynman formulation

of classical electrodynamics and Feynman’s of quantum electrodynamics.

3.3.1 Massless examples

Green functions for massless scalar particles may serve as examples. The reader should be

familiar with the Plemelj-Sokhotsky relations 1
x±iε = ∓iπδ+P 1

x [4]. For those particles, besides

(3.4), we have

D±(x− x′) = ± sgn t
δ((x− x′)2)

4π
− P

i

4π2(x− x′)2
.

Also,

Dret(x− x′) = H(t− t′)δ((x− x
′)2)

2π
= H(t− t′)

δ
(
|x− x′| − (t− t′)

)
4π|x− x′|

, and

Dadv(x− x′) = H(t′ − t)δ((x− x
′)2)

2π
= H(t′ − t)

δ
(
|x− x′|+ (t− t′)

)
4π|x− x′|

.
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It follows

DF (x− x′) =
δ((x− x′)2)

4π
− P

i

4π2(x− x′)2
=
−i
4π2

1

(x− x′)2 − iε
, and

DF̄ (x− x′) =
δ((x− x′)2)

4π
+ P

i

4π2(x− x′)2
=

i

4π2

1

(x− x′)2 + iε
.

The half-advanced, half-retarded propagator

D̄(x− x′) =
δ((x− x′)2)

4π

is the real part of the Feynman and Dyson propagators.

The simplest way to compute these functions ab initio is to compute D+ directly from its

definition (3.5). One can as well argue as follows. The formula implies that the Wightman

function for massless scalars must have the scaling behaviour

D+(λx) = λ−2D+(x).

This suggests (with some benefit of hindsight)

D+(x) ∝ 1

(t− iε)2 − |x|2
.

Note moreover that

D+(0,x) =
i

(2π)3

∫
eip·x

2|p|
d3p =

i

(2π)2|x|2
.

Therefore,

D+(x) =
−i

(2π)2
(
(t− iε)2 − |x|2

) ,
as above. For ζ = x− iη, with η in the forward lightcone, D+(ζ) is analytic.

Exercise 23. Do compute D+ directly from its definition (3.5).

Exercise 24. Verify the statement on the analicity of D+(ζ).

3.4 A new actor

Now consider the symmetric Green function D1,

D1(x) =
1

(2π)3

∫
cos(E(p)t− p.x)

E(p)
d3p =

1

(2π)3

∫
δ(p2 −m2)e−i(px) d4p. (3.6)

This is the kernel of the operator ω−1 cosωt, a different solution of the KG equation, obeying

D1(x, y) = D1(y, x). Obviously,

D1(x) = −i
(
D+(x) +D−(x)

)
; also D1 = −2i(DF − D̄) = −i(DF −DF̄ ).

For the massless case D1(x) = −P 1
2π2x2

.

Now, we certainly have:

D1(x, y) = s
(
D(x, .), D1(., y)

)
,
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or D1 = s(D,D1). Consider as well the operator J given by

exp(Aπ/2) =

(
0 ω−1

−ω 0

)
, such that J2 = −1V .

We have

Jv(x) =

∫
Σ

(
D1(x, y)∂ρv(y))− v(y)∂ρyD1(x, y)

)
dσρ(y), (3.7)

that is to say Jv := s(D1, v). This is true because it holds when Σ is the hypersurface y0 = 0.

The following distributional identity for the kernels D and D1 holds as well:

D(x, y) = −
∫

Σ

(
D1(x, z)∂ρzD1(z, y)− ∂ρzD1(x, z)D1(z, y)

)
dσρ(z). (3.8)

This is immediate from the operator definition of the kernels, or can be regarded as an exercise

in Fourier analysis, using (3.3) and (3.6). We may rewrite this identity as D = −s(D1, D1). In

effect

J2v = s(D1, Jv) = s
(
D1, s(D1), v

)
= −v,

where (3.8) and interchange of integrations have been used in the last equality.

The operator J is an important object. We pause to spell out how this comes about.

Classical 1-particle spaces in the abstract are endowed with no natural complex Hilbert space

structure: for neutral scalar particles, only the pair (V, s) of an infinite-dimensional real vector

space and a symplectic bilinear form are given. Then one must choose a suitable complex

structure J for (V, s). Only such a choice gives rise to a complex Hilbert space H, and it

constitutes the first step in the quantization process. (In discussions of quantization often the

matter of complex structures is omitted, and it is just assumed that H had been obtained

somehow.)

By definition, a complex structure J is a real-linear operator on V which satisfies

J2 = −1V . (3.9)

Moreover, we ask for

s(Ju, Jv) = s(u, v), for u, v ∈ V ; and for s(v, Jv) > 0, for 0 6= v ∈ V.

The first condition is that the complex structure be also symplectic; one says that J is compatible

with the given symplectic form s. The positivity condition is equivalent to demanding that the

symmetric bilinear form

dJ(u, v) := s(u, Jv)

be positive definite on V . Definition (3.9) allows us to regard V as a complex vector space under

the rule

(α+ iβ)v := αv + βJv for α, β real,

and in this case the hermitian form

〈u | v〉 := 〈u | v〉J := s(u, Jv) + is(u, v) = dJ(u, v) + is(u, v)

is an inner product on V . In conclusion, as hinted at before, a complex structure needs to be

given on a space of classical fields before quantization can proceed. The trio (V, s, J) is what
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constitutes
(
H, 〈· | ·〉

)
. In practice, a slightly less restrictive framework is needed: a real-linear

mapping K : V → H with dense range such that

〈Ku |Kv〉 := 〈u | v〉J . (3.10)

So we see that J given by (3.7) is a good complex structure. Compatibility of J with s is

also clear:

s(Jv1, Jv2) = s
(
s(v1, D1), s(v2, D1)

)
= s
(
s(D, v1), v2

)
= s(v1, v2).

Exercise 25. Prove that D1 (called the Schwinger “propagator”) is given by

1

(2π)4

∫
C8

e−i(px)

p2 −m2
d4p;

where the closed contour C8 draws a figure-eight around the poles.

3.5 A more covariant way of life*

For further analysis it is convenient to pass to a fully quadridimensional representation of s

(spacetime smearing) and of the action of the propagators. As it turns out, the same step is

necessary for a good definition of the quantum fields as OVDs. To do so already at the classical

level contributes to enhanced understanding of the quantization process.

We need the following definition: a function or distribution on M4 is of compact support

in the past if the intersection of its support with every backward lightcone in M4 is compact.

Analogously is compact support in the future defined. Note that the concept is much weaker

than ordinary compactness. It is rather clear that Dλ
ret/D

λ
adv are convolution inverse powers (in

the strict sense) of the KG operator respectively on the class of functions or distributions of

compact support in the past/future.

Let h be a smooth function on M4 of compact support in the past and the future. Then

vh(x) =

∫
D(x, y)h(y) d4y (3.11)

is a (smooth) element of V , because D(., y) is a solution of the KG equation. (A good behaviour

of h, vh at spatial infinity is understood.)

Reciprocally, any element v ∈ V can be represented in this way. For we may take any two

spacelike surfaces Σ1,Σ2 subject to Σ1 < Σ2 and write

hv(y) :=
(
� +m2

)
w(y)v(y),

where w is a smooth function with φ(y) = 0 before Σ1 and φ(y) = 1 after Σ2. Then clearly hv
is of compact support in the past and the future, and we assert vhv ≡ v. In effect, call M the

submanifold of M4 pressed below by Σ1 and above by Σ2. By the divergence theorem again∫
D(x, y)

(
� +m2

)
[w(y)v(y)]d4y =

∫
Σ2−Σ1

{
D(x, y)∂νy [w(y)v(y)]− w(y)v(y)∂νD(x, y)

}
dσν(y).

Because w vanish on Σ1, the second integral vanishes. On Σ2, on the other hand, w(y)v(y)

coincides with v(y), and the conclusion follows.

Of course, such an hv is far from unique. We next show that can add to the right hand

side of the formula defining it any (and only a) function of the form (� + m2)k, where k is a
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smooth function of compact support in the past and the future, but otherwise arbitrary. (In so

doing we are identifying elements of V with residue classes of functions of compact support in

the past and the future on Minkowski space, modulo the range of the KG operator � + m2.)

Indeed, if
∫
D(x, y)h(y) d4y = 0, then consider

k(x) :=

∫
Dret(x, y)h(y) d4y = Dadv(x, y)h(y) d4y.

This is of compact support in the past, as its support is a closed subset of the future of h; and

similarly is of compact support in the future. Now (� + m2)k = h. Clearly, h is of compact

support in the past and the future as well. For distributional solutions of the KG equation,

the same theorems apply, but without the smoothness and decay at spatial infinity restrictions;

that is to say, we take any distribution of compact support in the past and the future in the

second member of formula (3.11).

Now, simple manipulations, using D = s(D,D), D1 = s(D,D1) and interchange of integra-

tions lead to:

s(v1, v2) = −
∫
D(x, y)hv1(x)hv2(y) d4x d4y; (3.12)

as well as

Jv(x) = −
∫
D1(x, y)hv(y) d4y (3.13)

and

dJ(v1, v2) := s(v1, Jv2) =

∫
D1(x, y)hv1(x)hv2(y) d4x d4y. (3.14)

This expression is positive definite.

Assume now supphv1 ∩ past of supphv2 = ∅. Recall that DF = D̄ + i
2D1. We obtain

〈v1 | v2〉 = s(v1, Jv2) + is(v1, v2) =

∫
hv1(x)[D1 − iD](x, y)v2(y) d4x d4y

= −2i

∫
DF (x, y)hv1(x)hv2(y) d4x d4y.

If supphv1 is to the past of supphv2 ,

〈v2 | v1〉 = −2i

∫
DF (x, y)hv1(x)hv2(y) d4x d4y.

We perceive that DF , which plays no classical role, is related to the choice of quantization;

hence its inevitability. One can ask: are no other complex structures around equally suitable

for quantization? The answer is no, if we ask for Lorentz invariance of J ; actually D1 is uniquely

characterized by its employed properties, including positivity and symmetry [5].

Exercise 26. Prove (3.12), (3.13) and (3.14).
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