W

Mark Drela

Nomenclature

- V boat speed
- ΔV water turbine velocity change
- \dot{m}_t water turbine mass flow
- F_t drag force on water turbine
- P_t shaft power out of water turbine

- ΔW air prop velocity velocity change
- \dot{m}_p air prop mass flow
- F_p thrust force on air prop
- P_p shaft power into air prop

Velocities

The figure above shows a boat moving with water-speed V, in the same direction as a slower wind speed W. The water turbine therefore sees a water velocity of V, while the air prop sees an air velocity of V-W, both opposite the boat motion. The downstream velocity changes in the prop and turbine streamtubes are ΔW and ΔV .

Force-Momentum Relations

The force on each rotor is equal to the rate of axial momentum change in each streamtube.

$$F_p = \dot{m}_p \Delta [v_p] = \dot{m}_p \left[(V - W + \Delta W) - (V - W) \right] = \dot{m}_p \Delta W \tag{1}$$

$$F_t = -\dot{m}_t \Delta [v_t] = -\dot{m}_t [(V - \Delta V) - V] = \dot{m}_t \Delta V \qquad (2)$$

The negative sign for F_t is included because F_t defined positive as shown in the figure, which corresponds to a negative $\Delta[v_{\text{water}}]$.

Power–Kinetic Energy Relations

The shaft power of each rotor is equal to the rate of kinetic energy change in each streamtube.

$$P_{p} = \frac{1}{2}\dot{m}_{p}\Delta\left[v_{p}^{2}\right] = \frac{1}{2}\dot{m}_{p}\left[(V-W+\Delta W)^{2}-(V-W)^{2}\right] = \dot{m}_{p}\left[(V-W)\Delta W+\frac{1}{2}\Delta W^{2}\right]$$
(3)

$$P_t = -\frac{1}{2}\dot{m}_t \Delta \left[v_t^2 \right] = -\frac{1}{2}\dot{m}_t \left[(V - \Delta V)^2 - V^2 \right] = \dot{m}_t \left[V \Delta V - \frac{1}{2} \Delta V^2 \right]$$
(4)

The negative sign for P_t is included for the same reason as for F_t . Using the previous force relations, the power relations can also be given as follows.

$$P_p = F_p \left[(V - W) + \frac{1}{2} \Delta W \right]$$
(5)

$$P_t = F_t \left[V - \frac{1}{2} \Delta V \right] \tag{6}$$

Net Power

The net power available from the prop and turbine combination is

$$P_{\text{net}} = P_t - P_p = F_p W + (F_t - F_p) V - \frac{1}{2} F_t \Delta V - \frac{1}{2} \Delta W$$
(7)

If the vehicle is in stready-state operation, the net thrust must be equal to the net drag.

$$F_{\text{net}} = F_p - F_t = D \tag{8}$$

The net power then becomes

$$P_{\text{net}} = P_t - P_p = F_p W - DV - \frac{1}{2} F_t \Delta V - \frac{1}{2} F_p \Delta W$$
(9)

The four contributions to the net power (9) can now be readily interpreted:

F_pW	power produced by prop thrust moving at wind speed
-DV	power lost to drag force moving at boat speed
$-\frac{1}{2}F_t\Delta V$	power lost due to kinetic energy deposited in the water
$-\frac{1}{2}F_p\Delta W$	power lost due to kinetic energy deposited in the air

In steady-state operation, P_{net} must be sufficiently positive to balance the remaining power losses in the system. The main remaining losses not accounted for are power-transmission losses, profile-drag losses on the prop and turbine blades, and swirl losses in the prop and turbine slipstreams.