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3-5. Differentiating the equation of motion for a simple harmonic oscillator,

x = A sin @yt D
we obtain
Ax = Aw, cos ot At (2)
But from (1)
X
in @,f =— 3
sin oyt =5 3)
Therefore,
cos w,t =4/1— (x/A)2 4)
and substitution into (2) yields
At = M (5)

Wy NA® = x*

Then, the fraction of a complete period that a simple harmonic oscillator spends within a small
interval Ax at position x is given by

At Ax Ax
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This result implies that the harmonic oscillator spends most of its time near x = A, which is
obviously true. On the other hand, we obtain a singularity for At/z at x =+A. This occurs
because at these points x = 0, and (2) is not valid.
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Suppose the coordinates of m, and m, are x; and x, and the length of the spring at
equilibrium is (. Then the equations of motion for m, and m, are
m, %, =—k(x, —x, + () (1)

my3, =—k(x, —x, + () )
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From (2), we have

X, = % (myX, +kx, — k() 3)
Substituting this expression into (1), we find
4’ .
F[mlmzx2 +(my +my kxy | =0 (4)
from which
i, =—1 R kx, (5)
myn,

Therefore, x, oscillates with the frequency

o= [Tt Mg ©6)
mym,

We obtain the same result for x, . If we notice that the reduced mass of the system is defined as

—— = @)

w=\/E ®)
7

we can rewrite (6) as

This means the system oscillates in the same way as a system consisting of a single mass s

Inserting the given values, we obtain u=66.7 gand @ =274 rad-s™.
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Let A be the cross-sectional area of the floating body, h, its height, &, the height of its
submerged part; and let pand p, denote the mass densities of the body and the fluid,
respectively.

The volume of displaced fluid is therefore V = Ah, . The mass of the body is M = pAh, .




