PLASTICITY. Flow rule for kinematic hardening

Obviously, for a reversed loading process like the one in the cyclic loading diagram of Fig. 1, the
isotropic hardening will lead to a cyclic test behaviour according to the solid line OABCDE of Fig. 2

(in which the length of line segment BC is the same as that of line segment AB). It is, however, a well-
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established fact that in most materials there is a Bauschinger effect, by which a reversed loading will



rather follow the dashed line OABC’D’E of Fig. 2. This Bauschinger effect can be described by a
kinematic hardening in the following way:

f = f(o ayy) = oe(0yj — ai) — o5 (1)
in which a;; isa 2" order tensor:
Qij = Qij G] 2

often called the backstress, and g is the yield strength of the virgin material. Since Eq. (1) states that
after plastic flow, g, will now be computed using o;; — «;; instead of g;; as argument, we will
obviously have a translation of the yield surface. See Fig. 3.

Fig. 3 Example of kinematic hardening (von Mises case)

What remains is, therefore, to establish the function a;; = «;; (e,fl). The two most frequent strategies
are

da;; = c(k)deipj (Prager) 3)

da;j = du(oy; — a;j) (Ziegler) ()

where ¢ is a constant that is characteristic for the material (in analogy with c¢® in the isotropic
hardening) and du = du(def’j) is a function of the increment of plastic strain which is also
characteristic for the material. To illustrate the difference between the Prager and Ziegler models, we
can, for instance, look at the Tresca case shown in Fig. 4. (In the von Mises case, it is, on the other
hand, easy to realise that the two models are identical.)

Two important properties of the Prager da;; may be noticed. Since c®) is a constant, Eq. (3) can be
directly integrated to give

_ (k)P
a;j = c )eij, (5)

and, further,

e = Vel =0 6)
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Fig. 4 Prager and Ziegler kinematic hardening shown in a Tresca case

I.e., the Prager a;; is deviatoric:

al = ayj

General flow rule for kinematic hardening

Again, we start by the consistency condition df = 0

f)f af aaij p
df = ﬁijdo-ij + Wi]’ae’fl dekl =0

From the definition of f given in Eqg. (1), we can differentiate to find 9f /do;; and 0f /da;;:
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Egs. (8) and (10) together with the fundamental normality rule
of
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which is still valid, gives
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and, consequently,
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Specialisation to von Mises

With
3 ! !

f =0e(0ij — aij) — 05 = E(Sij —aj;) (s — ajy) (14)
we get
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This inserted into the general kinematic hardening flow rule [Eq. (13)] gives
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€kt
where we have also used the property that a;; is deviatoric, i.e., a{j = a;; (cf Egs. (6) and (7)).
Prager kinematic hardening
Using the Prager hypothesis, Eq. (16) can be simplified. By Eq. (3) we get
da
9%%aq
9e p = SpiSqc®. (17)
This inserted into the flow rule (15) gives
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