Apéndice B

Expresiones de velocidad y aceleración en distintas coordenadas

Índice

B.1. Coordenadas cartesianas B.1
B.2. Coordenadas cilíndricas y polares B.2
B.3. Coordenadas esféricas B.4
B.4. Triedro intrínseco B.5

La aplicación de las ecuaciones de la dinámica requiere expresar las componentes de la velocidad y aceleración según un determinado sistema de coordenadas. Las coordenadas cartesianas ortonormales es la elección obvia y más simple pero no siempre son las más adecuadas; esto dependerá de la geometría del problema concreto. En ocasiones es ventajoso emplear otras coordenadas, como las coordenadas cilíndricas (o polares en el caso plano), esféricas, o el triedro intrínseco a la propia trayectoria.

En cada uno de estos casos, el aspecto que nos ocupa es obtener las componentes de los vectores velocidad y aceleración:

$$\dot{\boldsymbol{r}} = \frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}; \quad \ddot{\boldsymbol{r}} = \frac{\mathrm{d}^2\boldsymbol{r}}{\mathrm{d}t^2}.$$
 (B.1)

B.1. Coordenadas cartesianas.

El triedro Oxyz está asociado a los versores (i, j, k) según cada dirección coordenada (figura B.1). Puesto que los versores del triedro son constantes,

para obtener la velocidad y aceleración basta derivar directamente las coordenadas:

$$r = xi + yj + zk$$

$$\dot{r} = \dot{x}i + \dot{y}j + \dot{z}k$$

$$\ddot{r} = \ddot{x}i + \ddot{y}j + \ddot{z}k$$

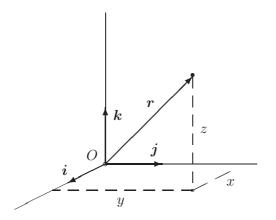


Figura B.1: Coordenadas cartesianas

B.2. Coordenadas cilíndricas y polares.

En este caso, las coordenadas que definen la posición son (ρ, θ, z) , siendo ρ la distancia desde un punto fijo O, θ el ángulo que forma la proyección del radio vector sobre un plano fijo con una dirección dada del mismo, y z la altura del punto sobre dicho plano (figura B.2).

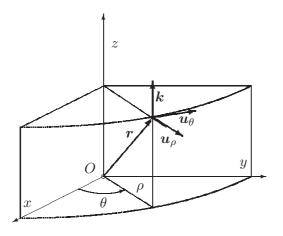


Figura B.2: Coordenadas cilíndricas

El triedro de vectores unitarios asociado (o base física) es $(\boldsymbol{u}_{\rho}, \boldsymbol{u}_{\theta}, \boldsymbol{k})$. El versor \boldsymbol{u}_{ρ} queda definido como un vector unitario en la dirección de la proyección de \boldsymbol{r} sobre el plano; \boldsymbol{k} es el versor perpendicular al mismo, y \boldsymbol{u}_{θ} es perpendicular a los dos anteriores. En este triedro tanto \boldsymbol{u}_{ρ} como \boldsymbol{u}_{θ} varían de punto a punto, constituyendo un sistema de coordenadas *curvilíneas*.

La posición de un punto queda definida mediante

$$\mathbf{r} = \rho \mathbf{u}_{\rho} + z\mathbf{k} \tag{B.2}$$

expresión que engloba también a las coordenadas polares para el movimiento plano, sin más que hacer z=0.

Es inmediato establecer las relaciones con las coordenadas cartesianas, tomando el plano de referencia Oxy de forma que se comparte la coordenada z:

$$x = \rho \cos \theta$$
$$y = \rho \sin \theta$$

Mientras que entre los versores de ambos triedros la relación es

$$u_{\rho} = \cos \theta i + \sin \theta j$$

 $u_{\theta} = -\sin \theta i + \cos \theta j$

Derivando estas expresiones respecto del tiempo se obtiene

$$\dot{u}_{
ho} = -\dot{\theta} \operatorname{sen} \theta \boldsymbol{i} + \dot{\theta} \cos \theta \boldsymbol{j}$$

$$= \dot{\theta} \boldsymbol{u}_{\theta}$$

$$\dot{u}_{\theta} = -\dot{\theta} \cos \theta \boldsymbol{i} - \dot{\theta} \operatorname{sen} \theta \boldsymbol{j}$$

$$= -\dot{\theta} \boldsymbol{u}_{\rho}$$

$$\dot{\boldsymbol{k}} = \boldsymbol{0}$$

Empleando estas igualdades y derivando el vector posición (B.2) se obtiene la velocidad,

$$\dot{\mathbf{r}} = \dot{\rho}\mathbf{u}_{\rho} + \rho\dot{\theta}\mathbf{u}_{\theta} + \dot{z}\mathbf{k};$$

repitiendo la operación, se obtiene la aceleración:

$$\ddot{\boldsymbol{r}} = (\ddot{\rho} - \rho\dot{\theta}^2)\boldsymbol{u}_{\rho} + (2\dot{\rho}\dot{\theta} + \rho\ddot{\theta})\boldsymbol{u}_{\theta} + \ddot{z}\boldsymbol{k}. \quad \Leftrightarrow \quad \begin{cases} a_{\rho} = \ddot{\rho} - \rho\dot{\theta}^2 \\ a_{\theta} = 2\dot{\rho}\dot{\theta} + \rho\ddot{\theta} \\ a_{z} = \ddot{z} \end{cases}$$
(B.3)

B.3. Coordenadas esféricas.

La posición de un punto queda ahora referida a las dos coordenadas angulares en una esfera de radio r: la longitud φ y la latitud θ (figura B.3).

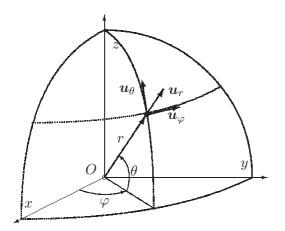


Figura B.3: Coordenadas esféricas

El triedro físico es ahora $(\boldsymbol{u}_{\varphi}, \boldsymbol{u}_{\theta}, \boldsymbol{u}_{r})$. La línea coordenada de longitud φ constante define el meridiano, al cual es tangente el versor \boldsymbol{u}_{θ} . Asimismo la línea de latitud θ constante define un paralelo, al cual es tangente el versor \boldsymbol{u}_{φ} . Por último, el versor \boldsymbol{u}_{r} lleva la dirección y sentido del radio vector \boldsymbol{r} .

Proyectando sobre las direcciones del triedro cartesiano se obtienen las relaciones con los versores del mismo:

$$u_r = \cos \theta \cos \varphi \, i + \cos \theta \sin \varphi \, j + \sin \theta \, k$$

$$u_{\theta} = -\sin \theta \cos \varphi \, i - \sin \theta \sin \varphi \, j + \cos \theta \, k$$

$$u_{\varphi} = u_{\theta} \wedge u_r = -\sin \varphi \, i + \cos \varphi \, j$$

En este caso los tres versores son variables, función del punto. Para obtener sus derivadas temporales, expresaremos primero sus derivadas parciales respecto de las coordenadas:

$$\frac{\partial \boldsymbol{u}_r}{\partial r} = \boldsymbol{0}; \quad \frac{\partial \boldsymbol{u}_r}{\partial \theta} = \boldsymbol{u}_{\theta}; \quad \frac{\partial \boldsymbol{u}_r}{\partial \varphi} = \cos \theta \, \boldsymbol{u}_{\varphi}
\frac{\partial \boldsymbol{u}_{\theta}}{\partial r} = \boldsymbol{0}; \quad \frac{\partial \boldsymbol{u}_{\theta}}{\partial \theta} = -\boldsymbol{u}_r; \quad \frac{\partial \boldsymbol{u}_{\theta}}{\partial \varphi} = -\sin \theta \, \boldsymbol{u}_{\varphi}
\frac{\partial \boldsymbol{u}_{\varphi}}{\partial r} = \boldsymbol{0}; \quad \frac{\partial \boldsymbol{u}_{\varphi}}{\partial \theta} = \boldsymbol{0}; \quad \frac{\partial \boldsymbol{u}_{\varphi}}{\partial \varphi} = \sin \theta \, \boldsymbol{u}_{\theta} - \cos \theta \, \boldsymbol{u}_r$$

Empleando estas relaciones, se obtiene

$$\dot{\boldsymbol{u}}_{r} = \frac{\partial \boldsymbol{u}_{r}}{\partial r}\dot{r} + \frac{\partial \boldsymbol{u}_{r}}{\partial \theta}\dot{\theta} + \frac{\partial \boldsymbol{u}_{r}}{\partial \varphi}\dot{\varphi}$$

$$= \dot{\theta}\,\boldsymbol{u}_{\theta} + \dot{\varphi}\cos\theta\,\boldsymbol{u}_{\varphi}$$

$$\dot{\boldsymbol{u}}_{\theta} = -\dot{\varphi}\sin\theta\,\boldsymbol{u}_{\varphi} - \dot{\theta}\,\boldsymbol{u}_{r}$$

$$\dot{\boldsymbol{u}}_{\varphi} = \dot{\varphi}\sin\theta\,\boldsymbol{u}_{\theta} - \dot{\varphi}\cos\theta\,\boldsymbol{u}_{r}$$

Por último, utilizamos estas expresiones en las derivadas temporales de r, para obtener:

$$\dot{\mathbf{r}} = \dot{r}\mathbf{u}_r + r\dot{\theta}\mathbf{u}_{\theta} + r\dot{\varphi}\cos\theta\mathbf{u}_{\varphi}$$

$$\ddot{\mathbf{r}} = (\ddot{r} - r\dot{\varphi}^2\cos^2\theta - r\dot{\theta}^2)\mathbf{u}_r + (2\dot{r}\dot{\theta} + r\dot{\varphi}^2\sin\theta\cos\theta + r\ddot{\theta})\mathbf{u}_{\theta}$$

$$+ (2\dot{r}\dot{\varphi}\cos\theta - 2r\dot{\theta}\dot{\varphi}\sin\theta + r\ddot{\varphi}\cos\theta)\mathbf{u}_{\varphi}$$

B.4. Triedro intrínseco

La propia curva definida por la trayectoria dinámica, r(t), permite definir un triedro denominado *«intrínseco»*, que a menudo resulta de gran utilidad para describir el movimiento. Se resumen aquí algunas definiciones y propiedades fundamentales de dicho triedro. Para un mayor detalle puede consultarse algún texto de geometría diferencial¹.

Vectores y planos del triedro. — Los versores que constituyen el triedro intrínseco están definidos por la trayectoria misma. Ésta puede considerarse parametrizada bien por el tiempo $(r(t), \text{ con derivada } \dot{r} = \mathrm{d}r/\mathrm{d}t)$, bien por la longitud del arco de curva s, sabiendo que $\mathrm{d}s = \sqrt{\mathrm{d}r \cdot \mathrm{d}r}$. El sentido positivo del arco coincide con el avance real sobre la curva a lo largo del tiempo.

- tangente $\mathbf{t} \stackrel{\text{def}}{=} \mathrm{d}\mathbf{r}/\mathrm{d}s$, vector unitario con igual dirección y sentido que la velocidad $\dot{\mathbf{r}}$.
- normal principal \mathbf{n} , vector unitario normal a la curva $(\mathbf{dr} \cdot \mathbf{n} = 0)$, y perteneciente al plano osculador (plano definido por dos tangentes sucesivas a la curva, \mathbf{t} y $\mathbf{t} + \mathbf{dt}$). Su dirección y sentido lo tomaremos por tanto según \mathbf{dt} , es decir, hacia el lado cóncavo de la misma.

¹D.J. Struik: Geometría Diferencial Clásica, Aguilar 1973; J.A. Fernández Palacios: Mecánica Teórica de los Sistemas de Sólidos Rígidos, (Anejo 1A), 1989.

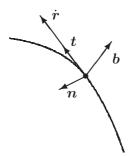


Figura B.4: Vectores del triedro intrínseco

- binormal $\mathbf{b} \stackrel{\text{def}}{=} \mathbf{t} \wedge \mathbf{n}$, perpendicular por tanto a la curva $(d\mathbf{r} \cdot \mathbf{b} = 0)$, y también a la normal principal $(\mathbf{n} \cdot \mathbf{b} = 0)$.

Los versores n y b definen el plano normal, cualquier recta contenida en este plano es normal a la curva. Por otra parte, el plano osculador queda definido por (t, n), siendo la binormal perpendicular al mismo.

Fórmulas de Frenet.— Al ser un versor de módulo unidad, la derivada del vector tangente es normal al mismo:

$$\frac{\mathrm{d}}{\mathrm{d}s}(\underbrace{t \cdot t}_{-1}) = 2t \cdot \frac{\mathrm{d}t}{\mathrm{d}s} = 0.$$
 (B.4)

Por la definición hecha de n, la derivada dt/ds lleva la dirección de n, y el módulo se denomina *curvatura*:

$$\kappa \stackrel{\text{def}}{=} \left| \frac{\mathrm{d} t}{\mathrm{d} s} \right|.$$

Se puede interpretar de forma intuitiva razonando que cuanto más se «doble» la curva (por unidad de arco), mayor es su curvatura κ . Dada la definición realizada de \boldsymbol{n} , por la que su sentido es siempre hacia el lado cóncavo, dicha curvatura resulta siempre positiva. Asimismo, se define el radio de curvatura como su inversa: $R \stackrel{\text{def}}{=} 1/\kappa$. Así,

$$\boxed{\frac{\mathrm{d}\boldsymbol{t}}{\mathrm{d}s} = \kappa \, \boldsymbol{n} = \frac{1}{R} \boldsymbol{n}} \qquad (1.^{\mathrm{a}} \text{ fórmula de Frenet}). \tag{B.5}$$

Veamos ahora la variación de la binormal b. Si la curva es plana, el plano osculador es fijo y $\mathrm{d}b/\mathrm{d}s=0$. En un caso general, esta derivada constituye una medida del alabeo de la curva que denominaremos torsión. En cuanto

a la dirección de esta derivada, razonamos en primer lugar, por los mismos argumentos esgrimidos en (B.4), que es normal al propio b. Por otra parte,

$$\frac{\mathrm{d}}{\mathrm{d}s}(\underbrace{\boldsymbol{b}\cdot\boldsymbol{t}}_{=0}) = \frac{\mathrm{d}\boldsymbol{b}}{\mathrm{d}s}\cdot\boldsymbol{t} + \boldsymbol{b}\cdot\frac{\mathrm{d}\boldsymbol{t}}{\mathrm{d}s} = \frac{\mathrm{d}\boldsymbol{b}}{\mathrm{d}s}\cdot\boldsymbol{t} + \underbrace{\boldsymbol{b}\cdot(\kappa\,\boldsymbol{n})}_{=0} = 0.$$

Deducimos pues que $d\mathbf{b}/ds = 0$ es normal a \mathbf{b} y a \mathbf{t} , es decir, lleva la dirección de \mathbf{n} , mientras que su módulo lo llamaremos torsión τ . Estableciendo de forma convencional el signo negativo en esta relación, puede escribirse

$$\boxed{\frac{\mathrm{d}\boldsymbol{b}}{\mathrm{d}s} = -\tau\,\boldsymbol{n} = -\frac{1}{T}\boldsymbol{n}} \qquad (2.\text{a fórmula de Frenet}). \tag{B.6}$$

(El radio de torsión resulta, análogamente al de curvatura, $T \stackrel{\text{def}}{=} 1/\tau$.) Por último, derivando la normal principal,

$$\frac{\mathrm{d}}{\mathrm{d}s}\mathbf{n} = \frac{\mathrm{d}}{\mathrm{d}s}(\mathbf{b} \wedge \mathbf{t}) = (-\tau \, \mathbf{n}) \wedge \mathbf{t} + \mathbf{b} \wedge (\kappa \, \mathbf{n}),$$

es decir:

$$\boxed{\frac{\mathrm{d}\boldsymbol{n}}{\mathrm{d}s} = \tau \, \boldsymbol{b} - \kappa \, \boldsymbol{t}}$$
 (3.a fórmula de Frenet). (B.7)

Expresiones de la velocidad y aceleración.— Empleando las fórmulas de Frenet es inmediato deducir las siguientes expresiones para velocidad y aceleración:

$$\dot{\boldsymbol{r}} = \frac{\mathrm{d}s}{\mathrm{d}t} \boldsymbol{t} = v \, \boldsymbol{t},$$

relación que expresa simplemente que la velocidad es tangente a la trayectoria. Derivando de nuevo,

$$\ddot{\mathbf{r}} = \dot{v}\,\mathbf{t} + v\frac{\mathrm{d}\mathbf{t}}{\mathrm{d}s}\frac{\mathrm{d}s}{\mathrm{d}t} = \dot{v}\mathbf{t} + \frac{v^2}{R}\mathbf{n}$$

Se identifican en esta expresión claramente dos términos de la aceleración:

$$\begin{cases} \dot{v} \, \boldsymbol{t} & \text{aceleración tangencial} \\ \frac{v^2}{R} \boldsymbol{n} & \text{aceleración normal (centrípeta)} \end{cases}$$