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Introduction

This is the ‘Lecture Notes’ version, and an extension, of my latest papers on
black hole microstates. These notes highlight the essentials, such that they
should be easier to read and understand. My plan is to keep this updated. If
new insights arise, they will be added.

In version v3, a chapter, with figures, on “virtual black holes and space-time foam”, was added at the end.
In version v4 further remarks were added, as well as several slides to explain better how some apparent
contradictions are to be understood, describing in more detail the generic quantum state of a black hole,
and how these evolve.
Version v5: More extended introduction, clarifications, responses to criticism, and finally some new features of the
current algebra, in particular the relation between mode numbers such as ` and m, and the angular momentum.
Version v6: major revisions. Discreteness of the microstate spectrum explained. As I still noted inaccuracies in the
earlier texts, I urge readers who hit upon any inconsistencies to mail the author: G.thooft@ uu.nl.
Version v7: More texts on motivation, justification and procedure appeared to be needed.

These notes must be seen as a personal view of the author. Most importantly,
we try to avoid any wild assumptions, as we usually see in the literature. Our
claim is that everything here is essentially derived from basic laws that are
well-established. Not even String Theory is used (this might change in the
future).

These notes are not intended for use in talks (too much information on single “slides”)
with apologies for not always following the same notation as used elsewhere.
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Black holes are an essential feature of the gravitational force. Without a
thorough understanding of their properties one cannot understand quantum
gravity. See: G. ’t Hooft, arxiv:1612.08640 [gr-qc] + references there.

We emphasise that the approach explained here is not intended to replace
other approaches, such as pure string theory descriptions or “fuzzballs”.
Rather, our approach is complementary. String descriptions, fuzzball
descriptions and other attempts, all have in common that unconventional
degrees of freedom are called upon because it is assumed that new ‘Planck
scale physics’ should be necessary to address the information paradox.
Alternatively, however, one could ask how conventional physics could be used to
address this purported paradox. Why not consider the gravitational interactions
between in- and out-going material? We find that this makes a big difference.

Hawking radiation consists predominantly of particles whose energies are
far below the Planck value, and this is why one might attempt to formulate the
effective laws of a black hole exclusively in terms of low-energy physics, of
which the rules are well-documented: the Standard Model, augmented with
perturbative quantum gravity. Thus, the Hilbert space of black hole states that
we consider exclusively consists of a fixed background metric with excitations in
the form of low-energy particles including gravitons. The gravitons represent
large distance fluctuations of the background metric.
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One might object that Planck scale phenomena should enter through the back
door. To our astonishment however, we found this not to be the case. The
physical degrees of freedom that are generated by the gravitational back
reaction obey linear equations that diagonalise, when described in terms of the
proper variables: the spherical harmonics.

If we would try to take into account matter that formed the black hole in
the distant past, or matter in terms of which a black hole evaporates entirely,
in the distant future, we would find that these degrees of freedom obtain
energies far beyond the Planck scale, so we should not include these objects.

At first sight, our Hilbert space consisting only of low-energy particles
(‘soft particles’) on a smooth background can only be maintained for a short
amount of time as seen by the distant observer. But we made an amazing
discovery: we can map states at (somewhat) later times 1-1 on states at earlier
times, and by repeating this, we can reach all time epochs; a state in our
Hilbert space stays in our Hilbert space.

At each given time, our procedure starts in a narrow time segment.
Therefore, in that time segment, we should use the metric of a permanent
black hole. The Penrose diagram for this permanent black hole has 4 regions,
I , II , III , and IV .
There will be one novelty in our work: regions II and IV are identified as the
antipodes of regions I and III (obtained by rotating 180◦ along the horizon).
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The above antipodal identification is mandatory. Without it, our evolution law
would not be unitary.

As soon as we adopt this constraint, as a new boundary condition for the
eternal Penrose diagram, we find a set of eigen states of our evolution law. No
further assumptions are now needed concerning the Planck scale.
The Planck scale does enter when we go to the high ` spherical modes, but, as
the equations are linear and decouple (in the approximations used – and
justified), we may include all ` up to a freely adjustable cut-off. The best way
to choose this cut-off is by allowing exactly the number of microstates as is
needed to reproduce Hawking’s value.

Apart from the above, just known principles, such as Quantum Mechanics
and General Relativity were used.

Note, that QM and GR are also assumptions, but they are much
more compelling. Dropping or loosening these assumptions is much
more difficult than keeping them as long as we can. No theory is
sacred, and some sense of taste for what to keep and what not, is a
useful attire for a theoretical physicist.
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Topics such as microstates can be understood very well in our theory.
(As for the exact number of orthonormal microstates, our theory does allow us
to count them, see arXiv:1809.05367)

In this work, we focus on the Schwarzschild black hole, but generalisation
to Reissner-Nordström, Kerr, or Kerr-Newman seems to be straightforward.
The BPS limit towards extreme black holes will require a bit more care.

The picture of quantum black holes given in several publications suggests
it to be a chaotic system. Our work suggests that such chaos must be due to
the use of inappropriate or ill-defined variables.
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In these notes it will be found that quantum gravity in the bulk region up to
very near the event horizons can be handled by standard perturbation
expansion.

Of course, in Planck units, all out-going particles will have energies comparable
to the inverse of the black hole mass. And of course, we can keep all in-going
particles in that domain as well. Then all perturbations on the black hole’s
space-time metric will be small. To accommodate for these perturbations we
include gravitons among the low energy particles.

Thus we obtain an S matrix that is unitary in the Hilbert space spanned by
particles with energies (far) below the Planck mass
(we may choose the limit of ` so low that considerably fewer micro-states are
involved, but if we do that, an other problem would arise, see later).
Only at the horizon itself, one has to take into account the gravitational back
reaction. Surprisingly, this entirely non-perturbative feature can be handled,
since it happens to be described by linear equations.

Indeed, we emphasise that one can use ordinary coordinates in the bulk region,
while at the (past as well as future) event horizons the gravitational back
reaction saves the theory from breaking down.
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What used to be thought of as chaos is now brought to order. Our system
is comparable to a large number of quantum particles in a multi-dimensional
rectangular box, with non-rational ratios in the lengths of the edges and the
momenta of the particles. If viewed as a gas, it looks chaotic. But it is not.

In such a box, the particles do not interact, so all of their motions, in all
directions, are decoupled. Every single particle, in every of the principal
directions in the box, is described by a simple, one dimensional (quantum)
equation of motion, which is trivial to solve for an undergraduate student.
The black hole is just like this. Particles in the bulk interact, but only weakly,
so, in our first approximations, we may neglect their interactions

Due to the fact that, on the horizons, we can expand the distribution of
in- and out-going matter in spherical harmonics, we obtain equations that show
that, on the horizons, all these different spherical harmonic modes completely
decouple. Their equations factorise, just as the particles in our toy example, or
the quantum modes in the hydrogen atom.

The gravitational back reaction also factorises. The great advantage of this
feature is that now we can easily solve the mathematical equations and see
what happens.
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At first sight, it seems that what we do is plainly wrong, and it was criticised as
such in my email exchanges with colleagues. But the equations are so simple
that one can investigate all alternatives.

It is essential to have Cauchy surfaces, and examine how the data on these
surfaces evolve with time. What is the time coordinate? How can we ensure
that the Cauchy data evolve through unitary equations? The Cauchy data
should not get lost between the crevices of the horizons, which can easily
happen while you think you are doing things correctly. So, the spherical wave
expansion takes the place of the particle experiments when physicists were
working hard to construct what is now known as the Standard Model.

An important step has not yet been discussed. We explain how to obtain a
unitary S matrix, expressed explicitly in terms of the orthonormal basis of a
specially chosen Hilbert space. But this raises a question: How should we map
this orthonormal basis, defined in terms of the momentum distribution of in-
and out-going matter, onto the orthonormal basis generated by the Fock space
of the Standard Model (or whatever replaces it at the scale where we consider
the black hole)?

This mapping must be 1-1, but it is non-linear.
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This problem may seem to be very difficult. However, in ancient publications,
the author demonstrated the close resemblance of our theory to a (rotated)
string theory: the black hole horizon is mathematically closely related to a
string theory world sheet. How do strings interact with particles coming in and
out, at relatively low energies? Surprisingly, this difficulty is very similar to our
difficulty with the 1-1 mapping sought for above. And string theorists solved it!
The solution is that the state of N external particles is generated by putting N
vertex insertions on the world sheet. Replace these vertex insertions by N Dirac
delta peaks of in-going (or out-going) momentum, and then integrate over the
positions of these vertices over the horizon.

Thus, we should copy the string theory solution into our horizon theory. It
should be straightforward, but it has not been done explicitly. This time, we
insist that the mapping should be a unitary one.

And now we have an important problem: we have practically no experiments,
We conclude that we must be extremely careful and use devices such as
spherical wave expansions or whatever else we can put our hands on, to get a
clearer picture and to simplify our subject.

To my opinion, such advice should be followed meticulously.

See here how far I got. This author however, is still working mostly alone, and
yes, I can make mistakes. If you, reader, think I made mistake(s) please do not
hesitate to contact g.thooft@uu.nl
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PART 1, Theoretical considerations and derivations
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The tortoise coordinates

Our prototype is the Schwarzschild black hole. No serious complications are
expected when generalised to Kerr-Newman or such. The extreme (BCS) black
hole would not serve our purposes, because it is a limiting case, and its horizon
is fundamentally different from the more generic black holes.

Consider the Schwarzschild metric:

ds2 =
1

1− 2GM
r

dr 2 −
(
1− 2GM

r

)
dt2 + r 2dΩ2 ;

{
Ω ≡ (θ, ϕ) ,

dΩ ≡ (dθ, sin θ dϕ) .

Go to Kruskal-Szekeres coordinates x , y , defined by

x y =
( r

2GM
− 1
)
er/2GM ;

y/x = et/2GM .

ds2 =
32(GM)3

r
e−r/2GM dx dy + r 2dΩ2 .

At r = 2GM, we have x = 0 : past event horizon, and
y = 0 : future event horizon.
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We concentrate on the region close to the horizon: r ≈ 2GM. There:

x =

√
e/2

2GM
u+ ; y =

√
e/2

2GM
u− ; 2GM ≡ R

ds2 → 2du+du− + R2dΩ2 . time t/4GM = τ

distant
time

local time

surface
Cauchy

III

III

IV

u
+

u
−

u−(τ) = u−(0)eτ

u+(τ) = u+(0)e−τ

As time goes forwards, u+

approaches the horizon
asymptotically;

as time goes backwards, u−

approaches the past horizon
asymptotically (tortoises).

Particles going in generate
wave functions on u+,
particles going out start as
wave functions on u−.
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If we redefine u+ → f (u+) , u− → g(u−), then the metric keeps the form

ds2 = 2A(u)du+du− + r 2(u)dΩ2. → Map u± on compact domains:

The Penrose diagram.

For pure Schwarzschild (without matter either responsible for the formation of
a black hole, or representing its final decay):

III

IV

III
u+

u−

in

outin

out

∞

∞+

∞−
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Now, we begin to deviate from standard practice:
This is the “eternal black hole” (it never formed, it will never decay,

since, on the average, as many particles are going in, as there are going out).
We keep it. Why?

We put the “microstates” on a Cauchy surface. As yet, we are only
interested in how they evolve for a short amount of time. For the
quantum properties of the BH, the distant past, and the distant
future, should be irrelevant.

An elegant way to justify this: in case the implosion took place
infinitely long ago, the out-going Hawking particles will be only in
one state, the Hartle-Hawking state (see Slide # 51). When we
observe the out-going Hawking particles, we project this state along
a much larger class of basis states. Extrapolating these states back
to the past, we will see many more recent in-going particles,
including more recent implosions. We do allow all these states,

but we identify them by exclusively counting the recent in- and
out-going particles only.
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This picture, however, is yet to be considered as an intermediate state of our
discussion. We use it as a starting point to describe small variations in the
black hole state during small periods in time. Later, we will address the black
hole’s long-term time dependence more accurately, and find the above
formalism to be perfectly fitting for our procedure.

Hard and soft particles

First, consider the particles near the horizon(s), having momenta (p+, p−, p̃).
The mass shell condition is 2p+p− + p̃2 + µ2 = 0.
Here, p̃ is the transverse part of the momentum, µ = mass;

|p̃| ≈ L/R and µ are basically constant.
But p−(τ) = p−(0)eτ , p+(τ) = p+(0)e−τ (See slide 13)

Define soft particles: |~p |, µ � MPlanck Negligible effect on
space-time curvature.

Define hard particles as particles that do cause appreciable
space-time curvature.

As τ →∞, p+ → 0, p− →∞: all in-particles will become hard;
As τ → −∞, p− → 0, p+ →∞: all out-particles originally were hard.

|p̃| and µ stay small.
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To understand what happens with the evolution at longer time
intervals, we have to understand what the hard in- and out- particles do.

Consider an in-particle that is soft at τ ≈ 1. Now consider the same particle in
a coordinate system centering at a later time τ � 1. The in-particle then has
become hard, since its momentum increases exponentially with time. Its
interactions with other in-particles are negligible (they basically move in parallel
orbits), but it does interact with the out-particles. The interaction through
QFT forces stay weak, but the gravitational forces make that (early)
in-particles interact strongly with (late) out-particles.
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The gravitational effect of a fast, massless particle is easy to understand:

Schwarzschild metric of a particle with tiny rest mass m� MPlanck :

And now apply a strong Lorentz boost, so that E/c2 � MPlanck :

curvature

flat spaceflat space
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This we use to compute the gravitational force between hard and soft
particles;

The gravitational back reaction:

Calculate the Shapiro time delay caused by the grav. field of a fast moving
particle: simply Lorentz boost the field of a particle at rest:

δx

x

x ′

1

2

u
−

δp
−

δu
−

1
2

space-time
flat

space-time
flat

δu−(x̃) = −4G p−(x̃ ′) log |x̃ − x̃ ′| .

P.C. Aichelburg and R.U. Sexl, J. Gen. Rel. Grav. 2 (1971) 303,
W.B. Bonnor, Commun. Math. Phys. 13 (1969) 163,
T. Dray and G. ’t Hooft, Nucl. Phys. B253 (1985) 173.
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What we need to know is the interactions between in- and out-particles.

0 � MPlanck MPlanck ∞
|p±| →

∞

↑
|p∓|

Shapiro
drag

MPlanck

� MPlanck

QFT Shapiro drag

0

NOT
NEEDED

(very important, check
our calculations . . . )
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The fact that the mutual interactions between hard particles, at the Planck
mass or beyond, will not be needed, is a very important aspect of this work. As
you will see.

We start with only soft particles on a Cauchy surface of the Penrose diagram.
These will define all quantum microstates of the black hole at a given time.

Now, the question is how do these evolve with time.
The soft particles won’t stay soft; their longitudinal momenta will quickly
explode. To see what happens, calculate δu− (the Shapiro shift).

For that, we use Slide # 19, adapted to the Schwarzschild metric. This means
that we replace the transverse coordinates x̃ by the solid angle Ω = (θ, ϕ).
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An in-particle with momentum p− at solid angle Ω′ = (θ′, ϕ′)
causes a shift δu− at solid angle Ω = (θ, ϕ):

δu−(Ω) = 8πG f (Ω,Ω′)p− ; (1−∆Ω)f (Ω,Ω′) = δ2(Ω,Ω′) .

If there are many in-particles:

p−(Ω) =
∑
i

p−i δ
2(Ω,Ωi )

δu−(Ω) = 8πG

∫
d2Ω′f (Ω,Ω′)p−(Ω′) .

Our “reference” black hole will have a few soft particles seen by a local
observer. This quantum state will be close to the Hartle Hawking state (see
slide 51).

The distant observer will see unending streams of in- and out-particles with
given positions u+ or u−. Suppose now that p−(Ω) represents all in-particles
needed to describe any black hole in a given quantum state.

This means that we replace δu− by u− itself.

Later, we will see how imploding matter may be described starting with
momentum distributions p− at the distant past.
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Then the out-particles will be at positions u−(Ω) given by

u−out(Ω) = 8πG

∫
d2Ω′f (Ω,Ω′)p−in(Ω′) .

Notice that very early in-going particles have huge values for p−. Therefore
they generate out-particles with huge values of u− – these must have separated
from the black hole long ago! We return to this subject later.

Spherical wave expansion:

u±(Ω) =
∑
`,m

u`mY`m(Ω) , p±(Ω) =
∑
`,m

p±`mY`m(Ω) ;

[u±(Ω), p∓(Ω′)] = iδ2(Ω, Ω′) , [u±`m, p
∓
`′m′ ] = iδ``′δmm′ ;

u−out =
8πG

`2 + `+ 1
p−in , u+

in = − 8πG

`2 + `+ 1
p+
out ,

(1)

p±`m = total momentum in of out
in -particles in (`,m)-wave ,

u±`m = (`,m) - component of c.m. position of in
out-particles .
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Because we have linear equations, all different `,m waves decouple, and
for one (`,m)-mode we have just the variables u± and p±. They
represent only one independent coordinate u+, with p− = −i∂/∂u+.

The dynamics completely factorises in (`,m) spherical harmonics.

This complete decoupling is due to our approximations, which are very good as
long as `� MBH ... in Planck units.

This remains true in the harmonics of a Kerr black hole, but that generalisation is not

considered here.

3 more steps to be taken:
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1. Starting with the QFT states of the particles entering the future event horizon,
we must calculate their p−(θ, ϕ) distribution there. The high momentum cut-
offs must be chosen such that this mapping is unitary (or: reversible).
This is difficult.

Comparable to vertex insertions as in string theory.

2. p−(θ, ϕ) on the future event horizon generates u−(θ, ϕ) on the past event
horizon. But its support is [−∞, +∞], so it is spread over
both regions I and II . What is the physical interpretation of region II ?

Postulate that region II refers to the same black hole as region I ,
but not at the same solid angle Ω = (θ, ϕ). Only one possibility:

The antipodal identification:
I ↔ II

Ω ↔ Ω̃ = (π − θ, ϕ+ π)

3. The “firewalls”. Soft particles become hard particles. Must be ‘removed’.

Obvious suggestion: all information carried by the in- particles is now present in
the out-particles. The in-particles are redundant (“quantum clones”). Leave the
hard ones out. Hilbert space is completely specified by the coordinates u−(Ω)
of the out-particles, as soon as |u−| > LPlanck, these out-particles are then soft.

This is the “firewall transformation”; it removes all hard particles
in the longitudinal direction, and thus removes the firewalls.
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The antipodal transformation is the constraint that a space-time operation acts
as an identity. This operation has C = P = +1 , T = CPT = −1, as is
explained in slide # 42.

The basic, explicit, calculation

The algebra (1), slide 23, generates the scattering matrix, by giving us the
boundary condition that replaces |in〉-states by |out〉-states. This boundary
condition replaces the old brick wall model and, in the spherical harmonics
expansion, it is embarrassingly easy to derive

All of this is NOT a model, or a theory, or an assumption, but a calculation . . .

Apart from the most basic assumption of unitary evolution,
which forces us to fold the Penrose diagram along the antipodes,
this is nothing more than applying GR and quantum mechanics !
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At some points in the following derivations, it may seem that choices were
made as to how to continue, such as the eternal BH Penrose diagram and the
antipodal identification, and some of my choices are being criticised as they
may seem illogical.
I emphasise however that they will all be vindicated by the final result, a
unitary evolution law. There is no other way to obtain that. The internal logic
will become clear. None of the other approaches in the literature that I have
seen produce such explicit results.

At every (`, ϕ), we have just one variable p−, proportional to one u−, with the
Fourier transform p+, proportional to u+.

So we have 1 dimensional quantum mechanics !

Now let us deduce what happens with the Fourier transformation when we use
tortoise coordinates.

27 / 64



Let there be two operators, u and p, obeying the commutator equation

[u, p] = i , so that 〈u|p〉 = 1√
2π
e ipu .

and a wave function |ψ〉, defined by ψ(u) ≡ 〈u|ψ〉 . Its Fourier transform is

ψ̂(p) ≡ 〈p|ψ〉 = 1√
2π

∫ ∞
−∞

du e−ipuψ(u) .

Now introduce tortoise coordinates, and split both u and p in a positive part
and a negative part:

u ≡ σu e%u , p = σp e
%p ; σu = ±1 , σp = ±1 , and

ψ̃σu (%u) ≡ e
1
2
%u ψ(σu e

%u ) , ˜̂ψσp (%p) ≡ e
1
2
%p ψ̂(σp e

%p ) ;

normalisation requires: (2)

|ψ|2 =
∑
σu=±

∫ ∞
−∞

d%u|ψ̃σu (%u)|2 =
∑
σp=±

∫ ∞
−∞

d%p| ˜̂ψσp (%p)|2 .

What is the Fourier transform in these tortoise coordinates?
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˜̂ψσp (%p) =
∑
σu=±1

∫ ∞
−∞

d%u Kσuσp (%u + %p) ψ̃σu (%u) ,

with Kσ(%) ≡ 1√
2π
e

1
2
% e−iσ e% .

Notice the symmetry under %u → %u + λ , %p → %p − λ , which is simply the
symmetry u → u eλ , p → p e−λ , a property of the Fourier transform,
a consequence of time translation invariance w.r.t. the external observer, and
an invariance of our algebra.

We now use this symmetry to write plane waves:

ψ̃σu (%u) ≡ ψ̆σu (κ) e−iκ%u and ˜̂ψσp (%p) ≡ ˘̂ψσp (κ) eiκ%p with

˘̂ψσp (κ) =
∑
σp=±1

Fσuσp (κ)ψ̆σu (κ) ; Fσ(κ) ≡ 1√
2π

∫ ∞
−∞

Kσ(%)e−iκ%d% .

Thus, we see left-going waves produce right-going waves. One finds
(just do the integral):

29 / 64



The Fourier transform in x , p space is non-local:

〈x |p〉 = 1√
2π

e ipx

But if we write x = σx e
%x and p = σp e

%p , where σx and σp are signs ±, then
the relation becomes:

〈%x , σx |%p, σp〉 = 1√
2π

e
1
2
(%x + %p) + iσxσp e

%x+%p

= K−σxσp (%x + %p) .

Blue = real component,
Red = imaginary comp.

K+(x) :
0

In practice it will appear as if F has
a finite support.
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Look at how our soft particle wave functions evolve with time τ ,
slide # 13 or 16.

Their Hamiltonian is the dilaton operator. Let κ be the energy:

H = − 1
2
(u+p− + p−u+) = 1

2
(u−p+ + p+u−) =

i
∂

∂%u+
= −i ∂

∂%u−
= −i ∂

∂%p−
= i

∂

∂%p+
= κ .

The energy eigen states are C (p−)iκ = C e
iκ %

p− ,

The Fourier operator on these states (σ is sign difference) is:

Fσ(κ) = 1√
2π

∫ ∞
0

dy

y
y

1
2
−iκ e−iσy = 1√

2π
Γ( 1

2
− iκ) e−

iσπ
4
− π

2
κσ .

Matrix

(
F+ F−
F− F+

)
is unitary: F+F

∗
− = −F−F ∗+ and |F+|2 + |F−|2 = 1 .
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The scattering matrix

Add the scale factor 8πG
`2+`+1

, to get, if u± = σ±e
%± ,

ψin
σ+

e−iκ%
+

→ ψout
σ− eiκ%

−
, (3)(

ψout
+

ψout
−

)
=

(
F+(κ) F−(κ)

F−(κ) F+(κ)

)
e−iκ log

(
8πG/(`2 + `+ 1)

) (
ψin

+

ψin
−

)
.

These equations generate the contributions to the scattering matrix from all
(`,m) sectors of the system, where |m| ≤ `. At every (`,m), we have a
contribution to the position operators u±(θ, ϕ) and momentum operators
p±(θ, ϕ) proportional to the partial wave function Y`m(θ, ϕ). The signs of
u±(θ, ϕ) tell us whether we are in region I or region II . The signs of p±(θ, ϕ)
tell us whether we added or subtracted a particle from region I or region II .

In Slides # 43 – 44, we derive that, considering all (`, m) values with
` < `0 = O(MBH/MPlanck) (the angular momentum limit), gives us

≈ eC
nst `2

0 log `2
0 microstates, which is the right order of magnitude. The

microstates will turn out to be discrete, but note that this black hole is not
exactly thermal, due to antipodal entanglement.
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a) Wave functions ψ(u+) of the in-particles live in region I , therefore u+ > 0.
b) Out-particles in region I have ψ(u−) with u− > 0.

0
in

u+

u−

Region I

a)

ψin (u+) ,   u+ > 0

0
out

u+

u−

Region I

b)
ψout (u−) ,   u− > 0

0
in u+

u−
Region II

c)u+ < 0

ψin (u+)

0
out

u+

u−
Region II

d)

u− < 0
ψout (u−)

The physical
picture

c, d) In region II , the in-particles have u+ < 0 and the out-particles u− < 0.
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Note that the in-particles will never get the opportunity to become truly hard
particles.

Eq. (4) is to be seen as a “soft wall”-boundary condition near the origin of the
Penrose diagram. Wave functions going in are reflected as wave functions
going out. These again emerge as soft particles.

Thus, there is no firewall, ever.

In the previous slide, the total of the in-particles in regions I and II are
transformed (basically just a Fourier transform) into out-particles in the same
two regions.

Note that the regions III and IV in the Penrose diagram (see slide 14) never
play much of a role, even if an observer falling in region III would want to
assure us that (s)he is still alive.

These regions are best to be seen as lying somewhere on the time-line where
time t is somewhere beyond infinity (thus a mere repetition of the degrees of
freedom we have seen before)
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The catch?

Our “boundary condition at the origin” is in terms of momentum distributions

p±(θ, ϕ) and center-of-mass positions u±(θ, ϕ) only.

But we would need the quantum wave functions as elements of Fock space
(which would be specified by positions or momenta, but also by other quantum
numbers!)

Such mapping should be unitary in Hilbert space. We are not certain that this
can be done, but it is natural to look at how it is done in string theory. Our
momentum distributions are like vertex insertions, although they are on the
horizon instead of the string world sheet.

Presumably we are describing black holes with variable sizes. There may well
be a cut-off at some large ` values depending on M. It can be argued that the
microstates do form a discrete set, even though the wave functions seem to be
continuous. This we explain In Slides # 43 – 44.
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The antipodal identification

Regions I and II of the Penrose diagram are exact copies of one another.
Often, it was thought that region II describes something like the ‘inside’ of a
black hole. That cannot be right, since region II , like region I , has asymptotic
regions. Hawking suggested that region II might be some other black hole, in
an other universe, or far away in our universe. However, our 2× 2 scattering
matrix implies that the two regions are in contact with each other quantum
mechanically. In ordinary branches of physics, such long-distance
communication never takes place, and I don’t think theories with such features
make any sense.

It is far more natural to assume that region II describes the same black hole as
region I . It must then represent some other part of the same black hole. Which
other part? The local geometry stays the same, while the square of this O(3)
operator must be the identity.

There is exactly one possibility: This is the O(3) operator −I, which is:
the antipodal mapping.

It is a parity inversion, but later we shall combine it with a time inversion and a
C inversion, so we have a CPT mapping, under which the laws of nature are
invariant. A different, but complementary discussion is found on slide # 42.
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Antipodal identification only holds for the central point (origin) of the Penrose
diagram. Regions I and II are different regions of the universe. But relating
region II to region I by demanding that the angular coordinates are antipodes,
means that now the mapping from Schwarzschild coordinates to Kruskal
Szekeres coordinates is one-to-one. This now turns out to be an essential
property of our coordinate transformations. Thus, we arrive at a new restriction
for all general coordinate transformations:

In applying general coordinate transformations for quantised fields
on a curved space-time background, to use them as a valid model
for a physical quantum system, one must demand that the following
constraint hold: the mapping must be one-to-one and differentiable.
Every space-time point (r , t, θ, ϕ) now maps onto exactly one point
(x , y , θ′, ϕ′), without the emergence of cusp singularities.

The emergence of a non-trivial topology needs not be completely absurd, as
long as no signals can be sent around much faster than the speed of light. This
is the case at hand here.
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Black emptiness: blue regions are the
accessible part of space-time; dotted
lines indicate identification.

The white sphere within is not part
of space-time. Call it a ‘vacuole’.

At given time t, the black hole is a 3-dimensional vacuole. The entire life cycle
of a black hole is a vacuole in 4-d Minkowski space-time.

Space coordinates change sign at the identified points
– and also time changes sign
(Note: time stands still at the horizon itself).

Not that all u± and p± coordinates are odd when switching between antipodes.
Therefore, only odd ` contribute in the spherical harmonic expansion.
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A timelike Möbius strip

time

time

Draw a space-like closed curve:

Begin on the horizon at a point

r0 = 2GM , t0 = 0 , (θ0, ϕ0) .

Move to larger r values, then
travel to the antipode:

r0 = 2GM , t0 = 0 , (π − θ0, ϕ0 + π) .
You arrived at the same point,
so the (space-like) curve is closed.

Now look at the environment {dx} of this curve. Continuously transport dx
around the curve. The identification at the horizon demands

dx ↔ −dx , dt ↔ −dt , .

So this is a Möbius strip, in particular in the time direction.
Note that it makes a T inversion and a CP inversion when going around the
loop. CPT is preserved, herewith correcting an error in earlier versions of these

notes. Therefore, CP must be a good symmetry! Thus, only ‘Standard Models’
where CP and T are at most spontaneously broken, are allowed.
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There are no direct contradictions, but take in mind that

the local Hamiltonian density switches sign as well.

This is not true for the total Hamiltonian adopted by distant observers. locally,
near the horizon, this is the dilaton operator. That operator leaves regions I
and II invariant, and does not flip sign along the loop. Also, the boundary
condition, our “scattering matrix”, leaves this Hamiltonian invariant.

The S-matrix commutes with the Hamiltonian.

There are numerous treatises in the literature claiming solutions to the black
hole information paradox, and about as many publications that dismiss these
claims.
This author dismisses all claims, from both sides, that either ignore the
gravitational back reaction of quantised excitations, or ignore the antipodal
identification of points on the horizon – meaning that the horizon is a
projective 2-sphere.

This concludes the most essential parts of the theory. If you have many burning
questions, please contact g.thooft@uu.nl. Only if you are really interested in
further details, problems and attacks aimed at solving them, consider PART 2,
below.
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PART 2, Further details and discussion
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In the previous version of these notes, it was concluded that the antipodal
identification requires CP symmetry conservation. This, we now argue, is not
true.

The following argument on CP sounds contradictory to the one on slide # 36,
but it really is equivalent:

First, the operation has (x , y)↔ (−x ,−y) , (dθ, dϕ)↔ (−dθ,dϕ), hence
PT = −1, but PC can still be +1.

Secondly, when crossing a vacuole (see slide # 38), at a given, fixed time, say
τ = 0, one can say that a particle exchanges r ↔ r , but dr ↔ −dr : the particle
exchanges front-to-back. Since furthermore θ ↔ π − θ, and ϕ↔ ϕ+ π, we
have dθ ↔ −dθ , dϕ↔ dϕ. Thus, of the local coordinates dr , dθ , and dϕ,
two change sign, so we locally have a P = +1 transformation. We can keep
C = +1, so that C = P = +1 so neither P nor C symmetry are involved.
Even while the antipodal identification has negative parity on the 2-dimensional
horizon, where r ≡ 2GM, one can say that the antipodal identification, at fixed
time, has positive 3-dimensional parity.

Thus, if now we add a T = −1 transformation in time, while
C = P = PC = +1 ; T = CPT = −1. This is an absolute symmetry of any
quantum field theory that can be used in the Standard Model.
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Discreteness of the microstates

Now let us describe the full Hilbert space of a black hole. Let us split it up:

BH: The (classical) background metric, for simplicity the Schwarzschild one,
filled with only soft particles, both in-going and out-going, but now we
keep only those particles that, at a given, fixed, time τ are close to the
horizon, typically inside a region 2MBH ≤ r ≤ 2MBH(1 + ε), where ε is
small but not very small, say ε = 0.1.

RU: The rest of the universe; all contributions of in- and out-particles which,
at the time τ , have r > 2MBH(1 + ε).

The total mass-energy, of BH + RU, is conserved, but since the split is a
function of time, the mass of the black hole is time dependent.

Let us take τ = 0. According to Slide # 13, we then have |x | = |y | .
√
eε, or

|u±| . 2GM
√

2ε. The fact that u± is taken to be inside this interval, implies
that p∓ is discrete:

p∓ =
π n∓

2GM
√

2ε
= u∓

`2 + `+ 1

8πG
.

Both u+ and u− are constrained, so that the integers n± are constrained:

|n±| ≤ ε (`2 + `+ 1)GM2

π2
≡ n0(`) ε .
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u+(`,m) does not commute with u−(`,m), so we take either n+ or n− to
characterise the state at (`,m). The entire microstate can thus be
characterised by the sequence{

n+(0, 0), · · · , n+(`max,mmax)
}

(assuming some maximal values for (`,m)).

The total number of states is (note that ` is odd):

N =
∏
`,m

(2n0(`) ε) = e
∑
`=odd(2`+ 1) log

(
n0(`)ε

)
= O(e`

2
max log `max) .

Note that our limits for the values of u±(`,m) for large ` can only indirectly be
interpreted as particle positions since u±`,m are partial wave amplitudes rather
than coordinates.

Assuming that `max = O(MBH/MPlanck), we recover the area law, but not the
coefficient.

This topic must be further investigated.
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Critical questions.
A bizarre sign switch

The effect of the gravitational footprint of an in-going particle (red line to
upper left) onto the out-going particles (other coloured lines) is correctly
accommodated for in this work. But there is an oddity, see our picture here of
the allowed regions I and II and the unphysical regions III and IV .

 fu
tu

re
 h

or
iz

on

  past horizon

II I

IV

III

u
−

u
+

The gravitational footprint moves the
pure states of all out-particles
combined in the light cone direction by
an amount δu−(θ, ϕ) in the same
direction as the in-momentum
δp−(θ′, ϕ′).
This is a unitary transformation in the
space of the combined wave functions
only if all out-particles move by the
same amount in the same direction, as
is drawn here.

But this led to an apparently valid
criticism:
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This configuration does not appear to correspond to a valid solution of
Einstein’s equations for the local observer. What are we doing wrong?

It appears that this corresponds to a solution of Einstein’s equations only if the
momentum δp− of the hard, in-particle flips its sign while passing through the
future event horizon. At the same time, of course, the arrow of time switches
sign.

Moreover, those out-particles that are dragged right across the horizon (green
line), do not seem to follow a geodesic at all, as regarded by the local observer.
Yet, of course, with our definition of the arrow of time, we have no choice, the
particle has to continue its way as shown. What should a local observer say?
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For the local observer, the diagram here does not show a classical solution, but
it shows the action of an operator. The operator creates an extra in-particle
(red line) that, in all states in regions I and II , shifts the geodesics of all
out-particles by the same amount, in the same direction.

But if we represent the result of this operator as what happens later in time,
then the fact that time runs backwards in region II leads to the impression that
a discontinuity occurs on the other (future) horizon.

Operators should not be regarded as effects that agree with evolution
equations; they represent what happens to a system if we make a change on
the Cauchy surface, at some moment in time.

They subsequently affect the entire geodesics of the particles.

The change brought about here, has the effect of a positive δp− particle in
region I and at the same time the effect of a negative δp− particle (an
annihilated particle) in region II . Note that the operators u± and p± on the
horizons all switch sign when passing from region I to II , since they are each
other’s antipodes, on the horizon.
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The BMS group.

In a development parallel to our work here, it has been argued that
“conservation of information” for black holes can be understood by using the
BMS group. It was claimed that this group generates an infinite class of
conserved charges that must be held responsible for safeguarding the
information processed by the black hole. These charges are associated to
supertranslations, and as such must take the form of (θ, ϕ)-dependent
momenta in the light cone direction. To the present author, the physical
interpretation of these arguments is less transparent. The arguments seem to
be very formal, and thus suspect. I would like to see how the BMS group
generates a unitary S-matrix.

It is quite conceivable that what is called BMS charges coincides with the
momentum distributions that are central in our discussions. The functions we
call p±(θ, ϕ) do correspond to the entire momentum entering (p−) pr leaving
(p+) at given solid angle Ω(θ, ϕ) as accumulated over all time. So situating
these “charges” on a projective square at J± makes sense.
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The black hole mass

Other question often asked: how does the mass of the black hole respond on
the absorbed and emitted particles?

This is actually very easy. The energy (the sum of the numbers κ at every
value of (`,m)), is exactly conserved. To see how this works, arrange all in-
and out- particles into three classes:

(i) The particles coming in when still far away from the future horizon, which
are the firewall transforms of the out-particles that are still very close to
the past event horizon, ready to emerge at some later era,

(ii) The soft particles in the parts of regions I and II that are in the
neighbourhood, but not too close to any of the horizons, and

(iii) The particles moving out at a safe distance from the black hole, they are
the firewall transforms of the particles that have arrived at a very close
distance from the future event horizon.
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The total energy, black hole plus these particles, is strictly conserved. But the
particles of group (i) (the very late particles) and group (iii) (the very early
particles) are so far away that we should not count those as part of the black
hole mass/energy. The particles of group (ii) however, are so close to the
horizon that these must be considered as part of the black hole.

We have to postulate that the entire black hole mass consists of the
contributions of these particles.

Clearly, this mass is time dependent, as the distinction of a particle’s classes is
time dependent.

Note however, that a black hole is always surrounded by the cloud of entangled
Hartle-Hawking particles.
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The complete set of black hole states

When a local observer sees a vacuum, it means that the black hole is in the
Hartle-Hawking state,

|Ω〉 = C
∑
E ,n

e−
1
2
βE |E , n〉I |E , n〉II .

It is seen as a vacuum |Ω〉 for the local observer, but contains states |E , n〉 in
regions I and II for the global observer. C is a normalisation constant, and n
represents all quantum numbers other than the energies E of the particle
states – as seen by the global observer.

The local observer may now use his creation and annihilation operators to go
to other states. All these states remain pure because of the antipodal
identification, but we loose the entanglement of the above HH state.
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The moment of collapse and the moment of the final explosion

How does the antipodal identification get started when matter collapses into a
black hole?
How does it end after the hole ended its life through evaporation?
This is a hard problem because at those moments the background metric is non
stationary. Energy and momentum are ill defined.
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time

1) Realistic coordinates,
with equal-time lines

Penrose diagrams:

2) situation at t = 0 3) situation at t � 0
showing Cauchy surfaces

II I

III

IV

4) antipodal identification

To obtain straight Cauchy surfaces, we need to invert time in region II , the
antipode.

and now the grav. shift can be accounted for
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Previous slide:

We describe here a metric with time-dependent source. the above was a
suggestion for taking the back reaction into account, also during collapse.
From picture (4) onwards, we propose to work just as in the “eternal” case.

When inspected in picture (1), we see that
The antipodal identification also implies an inversion in the time direction.
The entire inside region (grey) is removed,

so that only pure particle states can arise, also with gravitational back reaction.
As in the eternal case, we replace the energetic in-particles at the past horizon
by their footprints: the soft out-particles at the future event horizon.

The time-reverse of this, the final evaporation of the black hole,
must be handled in exactly the same way.
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More on the horizon algebra.

In my publications between ∼ 1985 and ∼ 1996, it was emphasised that the
amplitudes produced by the mechanism of the gravitational back reaction, are
strongly related to those of string theory. Perhaps it is string theory, although
it seems more like a string theory with purely imaginary α′. The mathematical
similarity originates simply from the fact that, as in string theory, we end up
with algebraic relations of particle coordinates on a two-dimensional surface.

The string world sheet is replaced by the point of intersection of the future and
the past event horizons. In- and out-going particles resemble the vertex
insertions on a closed-string world sheet. Thus, one might expect an algebra
akin to the Virasoro algebra. Yet I want to derive the black hole horizon
algebra with utmost care, since the physical circumstances are quite different.
If there is a relation, we need to find it, but also focus on differences.

In what follows we start producing some commutation rules, but calculations
were only just begun.

55 / 64



For the time being, replace the spherical horizon(s) by an infinite, flat Rindler

space-time. Replace the spherical harmonics Y`m(Ω) by plane waves e i k̃·x̃ ,
where the flat, transverse coordinates x̃ replace Ω = (θ, ϕ) and k̃ replaces the
“wave numbers” (`, m).
We consider the case k̃2 � M2

Planck (This may later be relaxed).
Write the blue equations in slide 23 as the Fourier transforms

u±(x̃) = 1
2π

∫
d2k̃ e±i k̃·x̃ û±(k̃) ,

p±(x̃) = 1
2π

∫
d2k̃ e±i k̃·x̃ p̂±(k̃) ,

2-vectors are indicated by a tilde (̃ ). The inverse equations are

û±(k̃) = 1
2π

∫
d2x̃ e∓i k̃·x̃ û±(x̃) ,

p̂±(k̃) = 1
2π

∫
d2x̃ e∓i k̃·x̃ p̂±(x̃) ,

Signs ± are chosen for later convenience. We omit the carets (̂ ) as their
locations should be clear from the notation.

u±(x̃) is gravitational displacement at x̃ caused by all p±i :
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Important: the momenta p± are now handled as distributions, built up from
deltas where particles enter;
the positions u±(x̃) just mark the location of particles with respect to their
horizons. Labelling the particles by an index i , we take:

p±(x̃) ≡
∑
i

p±i δ
2(x̃ − x̃i ) ; u±(x̃i ) = u±i ,

u−(x̃) = 8πG
∑
i

f (x̃ − x̃i ) p
−
i = 8πG

∫
d2x̃ ′ f (x̃ − x̃ ′)p−(x̃ ′) ;

Green function obeys: ∂̃2f (z̃) = −δ2(z̃) .

Our commutation rules are now:

[u±i , u
±
j ] = [u±i , p

±
j ] = [p±i , p

±
j ] = 0 , [u±i , p∓j ] = i δij ,

and the algebra turns into:

u−(k̃) = 8πG

k̃2 p−(k̃) ; [u±(x̃ ′), p∓(x̃)] = i δ2(x̃ ′ − x̃) .

[u±(k̃), p∓(k̃ ′)] = i δ2(k̃ − k̃ ′) ; [p−(k̃), p+(k̃ ′)] = i k̃2

8πG
δ2(k̃ − k̃ ′) .

u+(k̃) = − 8πG

k̃2 p+(k̃) ; ∂̃2 u±(x̃) = ± 8πG p±(x̃) .

Note Newton’s G in denominator. This algebra is “non-perturbative” in gravity.
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For future need:

[u±(x̃), p∓(k̃)] = i
2π

e±i k̃·x̃ , [u±(k̃), p∓(x̃)] = i
2π

e±i k̃·x̃ .

Because of the delta functions in the previous slide, the modes for the different
harmonic waves k̃ all decouple. Formally, a generic quantum state (replacing
Fock space for the Standard Model + perturbative gravity) is the product of
states: |u+(k̃)〉 for all allowed values of k̃.

Equivalently, one can label these states as |u−(k̃)〉 or |p+(k̃)〉 or |p−(k̃)〉 .
These modes are like the one-particle states in QFT, but not quite, they label
matter waves. Even so, we just have single wave functions ψ(u+) for a single
coordinate u+, at each value for k̃.

The wave functions ψ(p−), one for each value of k̃, are the Fourier transforms
of ψ(u+), see slide 28. ψ(p±) is the same as ψ(u±), after scaling the variables
p± to u±, see previous slide.
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It is important not to confuse the wave modes indicated by their mode number
k̃ with the actual momentum this state might have. This will be indicated by
the operator P̃ ≡

∫
d2k̃ p̃(k̃), which equals

∑
i p̃i for all particles i . Thus, like

p±, p̃ is a distribution.

In order to calculate how each mode k̃ contributes an amount p̃(k̃) to the total
transverse momentum, let us displace all harmonics by the same (infinitesimal)
distance ã. Then:

p+(k̃) e i k̃·x̃ → p+(k̃) e i k̃·(x̃+ã) , or: p+ → p+e i k̃·ã ; δp+ = i k̃ · ã p+ ≡ i ã · P̃ ,

and, noting that u± and p± are all in the same k̃ mode, we find that this
mode’s contribution to the momentum operator P̃ is:

P̃ = k̃
(
p+ ∂

∂p+
+ 1

2

)
= − k̃

(
p−

∂

∂p−
+ 1

2

)
= − i k̃( p+u− + 1

2
i)

= k̃
(
u+ ∂

∂u+
+ 1

2

)
=− k̃

(
u−

∂

∂u−
+ 1

2

)
= − i k̃(u− p+ − 1

2
i)

in agreement with the relations between u± and p± on slide 57.
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What are the eigen values of P̃ ? To understand the question, we return to
Hermitian operators (the plane waves are complex, hence non Hermitian).

Split up e±i k̃·x̃ = cos(k̃ · x̃)± i sin(k̃ · x̃).
Write p±(−k̃) = p±∗(k̃) , and

p±(k̃) e±i k̃·x̃ + p±(−k̃) e∓i k̃·x̃ ≡ p±1 cos(k̃ · x̃) + p±2 sin(k̃ · x̃) ,

p±(k̃) = p±1 ± ip±2 ; u±(k̃) = 1
2
(u±1 ± iu±2 ) .

The 1/2 is there to keep commutation rules as [u±α , p
±
β ] = iδαβ , where

α, β = 1, 2 . This gives the transverse momentum operator contribution of the
two modes k̃ and −k̃ together:

P̃ = − 1
2
k̃(u−1 − iu−2 )(p+

1 + ip+
2 ) + h.c. = k̃(u−1 p+

2 − u−2 p+
1 )

= i k̃
∂

∂ϕ
.
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P̃ = − 1
2
k̃(u−1 − iu−2 )(p+

1 + ip+
2 ) + h.c. = k̃(u−1 p+

2 − u−2 p+
1 )

= i k̃
∂

∂ϕ
.

r

u
1

−

u
2

−

ϕ

Hamiltonian

mode

momentum

mode
This generates
a rotation in
(u−1 , u

−
2 ) space. The

Hamiltonian,
H = u−p+ − 1

2
i =

u−1 p+
1 + u−2 p+

2 − i
generates a dilation (see
slide 32)
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The wave function for these two modes can be written as
ψ(u−1 , u

−
2 ) = ψ(r , ϕ) (in polar coordinates), see Figure.

P̃ generates a rotation while H generates a dilation
(actually, a Lorentz transforation, if we take u+

i and u−i together)

Note that ϕ is periodic, end therefore the eigenvalues of P̃ are given by
integers n ∈ Z:

P̃ = k̃ n .

This illustrates that k̃ itself is not to be interpreted as transverse momentum;
transverse momentum is a multiple of k̃,

and similarly, (`, m) are not to be interpreted as angular momenta.
Rather, they are spherical harmonic mode numbers.;
angular momentum is a multiple of `.
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We end with a speculation. It was introduced in version 3 of these slides.
Ignore it if you only want transparent physics.

Virtual black holes and space-time foam (Summary)

Virtual black holes must be everywhere in space and time. Due to vacuum
fluctuations, amounts of matter that can contract to become black holes, must
occur frequently. They also evaporate frequently, since they are very small.
This produces small vacuoles in the space-time fabric.
How to describe multiple vacuoles is not evident. The emerging picture could
be that of “space-time foam”:
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Work is still in progress. More than happy to discuss these ideas with like-minded colleagues.

The author benefited from discussions with P. Betzios, N. Gaddam,
O. Papadoulaki, S. Mathur, L. Susskind, J. Maldacena and many others.

See: G. ’t Hooft, arxiv:1612.08640 [gr-qc] + references there;
arxiv:1804.05744 [gr-qc];

See also:
P. Betzios, N. Gaddam and O. Papadoulaki, The Black Hole S-Matrix from
Quantum Mechanics, JHEP 1611, 131 (2016), arxiv:1607.07885.

S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and
Supertranslation Hair on Black Holes, arXiv:1611.09175 [hep-th]

N. Sanchez and B. Whiting, Quantum Field Theory and the Antipodal
Identification of Black Holes, Nucl.Phys. B283 (1987) 605.
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