
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/253692420

Derivation of the acoustic wave equation in the presence of gravitational

and rotational effects

Article  in  The Journal of the Acoustical Society of America · September 1979

DOI: 10.1121/1.383686

CITATIONS

5
READS

1,650

1 author:

John Desanto

Colorado School of Mines

104 PUBLICATIONS   1,276 CITATIONS   

SEE PROFILE

All content following this page was uploaded by John Desanto on 23 October 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/253692420_Derivation_of_the_acoustic_wave_equation_in_the_presence_of_gravitational_and_rotational_effects?enrichId=rgreq-d23bd78f58b90df1fd6ecba8eef56679-XXX&enrichSource=Y292ZXJQYWdlOzI1MzY5MjQyMDtBUzoxNTU1OTA0NzUxMjg4MzJAMTQxNDEwNzA2ODk5NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/253692420_Derivation_of_the_acoustic_wave_equation_in_the_presence_of_gravitational_and_rotational_effects?enrichId=rgreq-d23bd78f58b90df1fd6ecba8eef56679-XXX&enrichSource=Y292ZXJQYWdlOzI1MzY5MjQyMDtBUzoxNTU1OTA0NzUxMjg4MzJAMTQxNDEwNzA2ODk5NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d23bd78f58b90df1fd6ecba8eef56679-XXX&enrichSource=Y292ZXJQYWdlOzI1MzY5MjQyMDtBUzoxNTU1OTA0NzUxMjg4MzJAMTQxNDEwNzA2ODk5NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Desanto?enrichId=rgreq-d23bd78f58b90df1fd6ecba8eef56679-XXX&enrichSource=Y292ZXJQYWdlOzI1MzY5MjQyMDtBUzoxNTU1OTA0NzUxMjg4MzJAMTQxNDEwNzA2ODk5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Desanto?enrichId=rgreq-d23bd78f58b90df1fd6ecba8eef56679-XXX&enrichSource=Y292ZXJQYWdlOzI1MzY5MjQyMDtBUzoxNTU1OTA0NzUxMjg4MzJAMTQxNDEwNzA2ODk5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Colorado_School_of_Mines?enrichId=rgreq-d23bd78f58b90df1fd6ecba8eef56679-XXX&enrichSource=Y292ZXJQYWdlOzI1MzY5MjQyMDtBUzoxNTU1OTA0NzUxMjg4MzJAMTQxNDEwNzA2ODk5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Desanto?enrichId=rgreq-d23bd78f58b90df1fd6ecba8eef56679-XXX&enrichSource=Y292ZXJQYWdlOzI1MzY5MjQyMDtBUzoxNTU1OTA0NzUxMjg4MzJAMTQxNDEwNzA2ODk5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Desanto?enrichId=rgreq-d23bd78f58b90df1fd6ecba8eef56679-XXX&enrichSource=Y292ZXJQYWdlOzI1MzY5MjQyMDtBUzoxNTU1OTA0NzUxMjg4MzJAMTQxNDEwNzA2ODk5NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Derivation of the acoustic wave equation in the presence 
of gravitational and rotational effects 

John A. DeSanto 

Naval Research Laboratory, Washington, D.C. 20375 
(Received 6 October 1978; accepted for publication 30 March 1979) 

We derive, from first principles, the multidimensional partial differential equation obeyed by the 
underwater pressure field in the presence of gravitational and rotational forces acting on the fluid medium. 
The result is valid for a sound speed which depends on all three spatial dimensions and time. For the 
special case of a purely depth-dependent sound speed the result reduces essentially to that of Tolstoy. The 
relationship to the internal wave equation is also presented, as well as other examples, including the effect 
of Rossby waves. 

PACS numbers: 43.30. Bp, 43.20.Bi 

INTRODUCTION 

The effects on underwater acoustic propagation of 
modifications of the sound-speed field have recently been 
of great interest. The modifications are due to various 
sources including Rossby waves, several different cur- 
rents, geostrophic flows, internal tides, and internal 
waves. Ramsdale t has given a concise summary of the 
extensive research involved as wee as doing acoustic 
field calculations on a perturbation of a parabolic sound- 
speed profile. In general, however, the various sound- 
speed modifications, although physically motivated, 
are ad hoc perturbations based on one-dimensional re- 
suits and analogous extensions thereof. Apparently no 
systematic derivation of the multidimensional equations 
satisfied by the acoustic pressure in the presence of 
gravitational and rotational effects has been given, 
though in one-dimension, depth, Tolstoy 2'3 has derived 
equations in the presence of gravitational and rotational 
effects. In this paper we present the multidimensional 
derivation and show that Tolstoy's results follow in the 
special case of one-dimensional sound-speed depend- 
ence. 

In Sec. I we present the fluid equations and, using 
standard perturbation methods, the linear equations 
from which the acoustic equation is derived. Gravita- 
tional and rotational effects are included. Section II 

contains the derivation of the general result, and Sec. 
IIl some examples. These latter include an approxima- 
tion to the wave equation, the Helmholtz equation results 
for time-independent sound speeds, the Tolstoy results 
for the special case on one-dimensional sound-speed de- 
pendence, and a heuristic derivation of the equation 
satisfied by the vertical. velocity in the absence of acou- 
stic effects, i.e., the internal wave equation. A brief 
summary is contained in Sec. IV. 

I. FLUID EQUATIONS 

In tensor notation the equations describing the inter- 
action of the fluid pressure p, the mass density p, and 
the three components of fluid velocity uj(j = 1,2,3) are a' 
firstly the continuity equation 

a•tt + a j(p%) = O, (1) 
where (at, a 2, a a) = (a/ax, a/•y, a/•z), and the summation 

convention is assumed. We work in the locally tangent 
cartesian coordinate frame where the x and y coordin- 
ates lie in the plane tangent to the earth's surface and z 
points into the earth. 

Next we have the Euler equations relating the forces 
acting on the fluid particle to its acceleration. Using 
Eq. (1) they can be written as 

P•! =- , 
where we have included both gravitationat and Coriolis 
forces. Here g is the gravitational acceleration (posi- 
tive z points into the earth). These gravity forces act- 
ing on changes from the mean density in the medium 
yield motions having a wavelike character. They are 
called internal waves (IV/). Also 5• is the Kronecker 
delta function, e•,• the antisymmetric third rank tensor, 
and f= 2/1 sin0 is the inertial frequency, where // is the 
magrfitude of the Earth's angular velocity and 0 the 
angle of latitude. We can also introduce a component of 
horizontal rotation by writing f=fo + flY, where f0 and fi 
are constantsfi This is called the E-plane approxima- 
tion and is a first approximation of the effect of curva- 
ture on the rotating earth. Its introduction leads to the 
possibility of Rossby waves. In addition, in writing Eq. 
(2) we have assumed that the vertical motion is stoa1'1 
with respect to other velocities, and that the vertical 
component of the Coriolis force is much less than the 
gravitational force. 

Finally, there is a state equation relating the vari- 
ables. We write it simply as 

p =p(p). (3) 
We have not included an explicit dependence of the pres- 
sure on temperature or salinity. Instead we assume as 
is done in practice that this can be included in the sound 
speed. Equations (1)-(3) are five equations in the five 
unknowns p, u•, and p. 

Using standard perturbation arguments we replace the 
pressure, density, and velocities as follows: 

p _po +•p, 
p_ p0 + •p, (4) 
•j • EUj , 

where • is a small parameter and where we've assumed 

827 J. Acoust. Soc. Am. 66(3), Sept. 1979 827 



zero hydrodynamic velocity (u• ø = 0). The quantities p, 
p, and uj will henceforth refer to acoustic variables. 
Inserting Eq. (4) into Eqs. (1)-(3) and equating coeffici- 
ents of powers of • to zero yields, in lowest order, the 
hydrostatic result pO =pO(z), [90 =p0(z ) and, since we've 
neglected explicit temperature and salinity gradients, 
the approximate result 

c•(z) •ø • go ø , (•) , 
where the lowest order sound speed is defined via 

d•P 0 2, 
•=Co•Z•. (6) 

The first order (acoustic) results can then be written 
as 

3•-•t =-•(pø•t3)- pø31•fgj• , 
where the 3i• notation refers to the transverse (x,y) de- 
rivative, and u• represents the (x,y) components of the 
vector u•, viz. uj = (u•,ua), 

a•z = - O ø a•-•-t. + g o , (8) 

a•p =- oø•tu• + foøe•a•,u,•, (9) 
and the (linearized) equation of state for the acoustic 
variables 

p =cZ(x,/)p , (10) 
where c(x,t) is the full sound speed. Equation (10) fol- 
lows from an adiabatic compressibility argument. Dif- 
ferentiating Eq. (10) and using Eqs. (7) and (5) yields 
the result 

and 

• (•'•) ø •ua- pOa•xu,•-goøc•2u3 (ll) =-P 82 ' 

Equations (7), (8), (9), and (11) will be used in the sub- 
sequent development. Note that we have included in 
Co(Z) and c(x,t) the maximal permissible functional de- 
pendence consistent with the respective pressure and 
density variations. The assumptions on c(x,t) will be 
weakened iater in the examples. and 

II. DERIVATION OF THE COMBINED EQUATION 

Our purpose in this section is to derive a single partial 
differential equation relating the acoustic pressure alone 
to the sound speed and the gravitati0nal and rotational 
parameters. We use Eqs. (7), (8), (9), and (ll). First, 
take 3• of Eq. (9) and ea•3,• of Eq. (9). This yields the 
•vo equations 

2 0 0 V•0---p •3•ui•+pøfe)a•3)•u,,• +fipøu t , (12) 
and 

and 
Next take 3/•t of Eq. (12)and use Eq. (13). Theresult is 

•t V•=_ooL(a•u• ) o o a -fifo u2 +fiP '•/,t! , (14) 

where we have defined the operator 
32 

L =•.[+f2. (15) 
Setting j = l in Eq. (9) and substituting the result in Eq. 
(•4) yields 

•tv•p - fiatp =- pøL a•u• + 2•p ø au• (16) at ' 

The results of L operati • on Eqs. (7) and (11), and 
usi• Eq. (16), are the eq•tions 

• • 0 • 2 3ul (17) L •=-L •(o -•) +•v• -•a• - 2pp ø at ' 
and 

where we •ve defined the Vaisa• frequency 

N2(Z) =g(p0)' i(p0), _g2c• 2, (19) 
with the prime representing differentiation with respect 
to z. Operating with L O/or on Eq. (8) yields 

+ 2figp at ' (20) 
Equations (18) a• (20) can be r•ritten as 

L(g•(pøu•)-N2pøua)=D , (21) 

L(g•z(pOua ) 32 ß +•(Pøua))=E , 
where D and E are defined by 

D = •[gVh0 -gL(cP--f ) - 2figpøut]-gfiatp, 

(22) 

(23) 

3 2 2figpøu 0 -gfia•p (24) z = •(gv•p ap 
We wish to write D •d E as functions of only p, so we 
must solve for ul in terms ofp. From Eq. (9) we can 
derive 

32 a• a•p -f• a• =- OøZ • (25) at ' 

Operati• on Eqs. (21) and (22} with L, it is easy to see, 
using Eq. (25), that LD and LE depend on only p. Ex- 
plicitly they can be written as 

rr --g• • +•, 

where 

(27) 
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a 2 2•gf•t a•p +g•L*•tp, (28) 
a• L*= •/•t z -fl. Again, multiplying Eqs. (21) and (22) 
by L, and •di• and s•tracHng appropriately multi- 
plied versions of the results yields 

LZRpøus =LE - LD , (29) 
and 

gL eR • , øu, •zz•p • =]7tLv +NeLE, (30) 
where the operator R is defined by 

R =bSr+eve. (s•) 
Multiplying Eq. (29) by the operator ga/•z •d comb•- 
i• the result wi• Eq. (30) yields, after some algebra, 
a sidle eq•tion involvi• only the pressure and given 
by 

•tUE a•kc ] azj 

Eq•tion (32) is the fi•l reset for •he general sound 
s•ed c(x,/) without neglecti• •ny •erms in the deriva- 
tion. To our knowl•ge i[ •s not appeared before. I• 
is much too complicated to be usegul• but is simplified 
considerably in •e •ples below. 

Ill. 

A. •m•l• 1 

For •=0, Eq. (32) can be written as 

•V=0, (SS) 
where T is defined • 

[ • Xcl zj 

In •dR•on if we neglect all terms involvi• •wers of 
g •gher t•n one, we can approximately wr•te 

T • gRU , (S•) 
where 

A s•ieient coMition for a solution of Eqs. (33) aM (35) 
is U=0, which yields an eq•ion closely re,ted to 
•nal aeo•tic wave eq•tion. The only difference can 
be •hought of as a horizontal sea•. 

B. •x•mpl• • 

Assume •e so•d spe• i8 time independent, i.e., 

c(x,t)=cz(x) . 
Then we e• •tr•uee the Fourier transform • time 

with the notation (co is acoustic frequency) 

•b(x,co) =f exp(iwt)p(x, t)dt, (38) 
and, using the approximation c• 2 -c• 2 • 0, Eq. (32) can 
be transformed to yield the equation 

• a/, 0)-• ab\.• •_•re)-•(•re),a• 
+ (• _ •)(•z -f)" v• + •f(• - •z)(• _f•)-2 • • •y 

+ip•"(• z-•)(•+f)(• • -• -f ) 

Eliminati• the gravitational term • = 0) and ass•ing 
that the acoustic fr•ueney is muc h larger than the in- 
e•iai frequency (w >>f), Eq. (39) becomes 

+ + 0 (40) oy ox ' 
which reduces to the familiar three-dimensional 
holtz eq•tion if we also set the component of horizontal 
rotation to zero (B = 0). 

C. Example 3 

Assume the sound speed depends on only depth, i.e., 

c(x,t)= Co(Z), (41) 
and also set/3 = 0 so we can introduce an additional 
transverse spatial Fourier transform, vie. (K, is the 
transverse wavenumber) 

]•(z ,K, co)=f exp(-/K• 'x•)•(x,co)dx• . (42) 
ThenEq. (39) reduces to the one-dimensional equation 
p0[(00)*,,•,], + (coe _.v•)- 

+ [•ec•e +•(• _ co•,)(• _f•)-, 
+ 2gc• •c• -gc• 2(N2)'(w e - N2) ' •] • = 0, (43) 

which is similar to an equation derived by Tolstoy, 2,3 
but where we have retained additional terms. ? Again, 
for g= 0 and co >>f0, Eq. (43) becomes the familiar one- 
dimensional Helmholtz equation 

p0[(p0)-,•,], + (coZc• 2 -K•)p= O. (44) 
In Eq. (43) it is easiest to see the modification of the 
sound speed introduced by the presence of gravitational 
and rotational effects. We refer to Tolstoy z'• for a 
thorough discussion of the analytic properties of equa- 
tions of this type. 

D. Example 4: Internal wave equation 
A brief heuristic derivation of the spatial internal wave 

equation can also be given using our previous results. 
In Eq. (11) use the result for an incompressible fluid, 
3•u• =0, replace c by ce, and use the approximation 
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c2c• i • 1. Equation (11) then becomes 
ap at =-gpøus' (45) 

Fourier transform Eq. (45) in time (w is the internal 
wave frequency; the tilde notation is defined in Example 
2) to yield 

• =- igw' tpø•t a . (46) 
Substitute Eq. (46) into Eq. (39) and let c2- oo (incom- 
pressible fluid). The result is 

+ {[(p0)- l(p0),], -t- (p0)- I(D0),(N2)t(w2 - N 2 )-1} •3 

+•(W 2--N2)(w 2--/2)'2[ 2 •/3+iw'I(W2 +f) a•Z)= 0 \,7 ay ß 
(47) 

An additional transverse spatial Fourier transform of 
Eq. (47) yields, for • =0 (ki is the transverse wavenum- 
ber), 

(pO)-l(po•:•), +g(w 2 _N2)-l[(po)* •, 
+ _ w2)(w +[(oo)-,(po),], 

x [ 1 +g(pO)- ,(po),(w2 _ N2)- •]}• = 0. (48) 
Replacing the explicit density terms in Eq. (48) by a 
constant yields a result equivalent to the Boussinesq 
approximation, s under which assumption the IW equation 
is usually derived. The result is 

u-• + k,•(N 2 - w2)(w 2 -f•)' l•s = 0, (49) 
which is the usual IW equation in one dimension. An ex- 
tensive discussion of solvable examples of this equation 
can be found in the book by Roberts. 9 Finally, we re- 

mark that although our discussion of this example has 
been brief, the results can of course be derived more 
formally starting with the fluid equations and neglecting 
the density variation in the inertial terms? 

IV. SUMMARY 

We have presented the derivation of the partial differ- 
ential equation satisfied by the acoustic pressure in the 
presence of gravitational and rotational effects. The 
multidimensional results we present apparently have not 
appeared before. For the special case of one-dimen- 
sional variation, the results reduce essentially to those 
due to Tolstoy. A brief outline of some of these results 
was presented elsewhere. n 

tD. J. Ramsdale, J. Acoust. Soc. Am. 61, 65-75 (1977). 
2I. Tolstoy, Rev. Mod. Phys. 35, 207-230 (1963). 
3I. Tolstoy, Wave Propagation (McGraw-Hfil, New York, 1973), 

Chap. 4. 
4W. Krauss, Methods and Results of Theoretical Oceanography. 

I. Dynamics of the Homogeneous and Quasihomogeneous 
Ocean (Gebrueder Borntraeger, Berlin, 1973), Chap. 1. 

SL. D. Landau and E. M. Lffshitz, Fluid Mechanics (Addison- 
Wesley, Reading, MA, 1959), Chap. 1. 

6See Ref. 3, p. 161 and Ref. 4, p. 38. 
7Tolstoy's equations (Ref. 2, pp. 211-212 or Ref. 3, p. 143) are 

written in terms of displacements, ours in terms of pressure. 
In addition we have kept terms depending on c• and N' which 
Tolstoy neglects. The net results are additional modifica- 
tions of the dispersion relation. 

SO. M. Phillips, The Dynamics of the Upper Ocean (Cambridge 
U. P., Cambridge, 1969), p. 14. 

9J. Roberts, Internal Gravity Waves in the Ocean (Marcel Dek- 
ker, New York, 1975), Sec. 3.4. 

løSee Ref. 3, p. 44. 
Hj. A. DeSanto, "Theoretical Methods in Ocean Acoustics" in 

Ocean Acoustics, edited by J. A. DeSauto, Vol. 8 of Topics in 
Current Physics (Springer, Heidelberg, 1979), pp. 15-18. 
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