

SHOCK ABSORBERS: EXERCISE

Exercise statement

Using the attached information:

1. calculate Ride frequency of front and rear sprung and unsprung masses for every spring possibility.

2. calculate the sprung mass damping coefficients at the wheel, inbump and rebound at 150 - 250 - 300 and 500 mm/sec using the advised springs in the setup (110N/mm front and 90N/mm rear), and present them in a graph [damping ratio - damper speed]. Do this for the top hard and top soft setting in the shock absorber.

TO SUBMIT:

1. One Document in Pdf format with your answers.

SPRINGS AND CORNER WEIGHTS

TECHNICAL SCHOOL

Measures	Nm	Remark
160-60-120	120	Front use recommended
160-60-110 (car delivery - front)	110	Front use recommended
160-60-100	100	Front use recommended
160-60-90 (car delivery - rear)	90	Rear use recommended
160-60-80	80	Rear use recommended
160-60-70	70	Rear use recommended

FRONT DAMPER

MOUND

REPJOL

REAR DAMPER

TECHNICAL SCHOOL

REPJOL

MOUND

