[FONT=sans-serif]Hola.
He leido en este foro que hay algunas dificultades a la hora de definir la conservación de la energía en relatividad general.
Yo esperaría que algo tan básico para la física como la conservación de la energía, y una teoría tan hermosa, potente y completa como la relatividad general fueran absolotamente compatibles.
Buscando en Wikipedia, encuentro:
In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor which incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a conserved current within the framework of general relativity, so that the total energy–momentum crossing thehypersurface (3-dimensional boundary) of any compact space–time hypervolume (4-dimensional submanifold) vanishes.[/FONT]
[FONT=sans-serif]Some people object to this derivation on the grounds that pseudotensors are inappropriate objects in general relativity, but the conservation law only requires the use of the 4-divergence of a pseudotensor which is, in this case, a tensor (which also vanishes). Also, most pseudotensors are sections of jet bundles, which are perfectly valid objects in GR.
¿Podeis educarme para que entienda las dificultades de la relatividad general con la energía?
gracias[/FONT]
He leido en este foro que hay algunas dificultades a la hora de definir la conservación de la energía en relatividad general.
Yo esperaría que algo tan básico para la física como la conservación de la energía, y una teoría tan hermosa, potente y completa como la relatividad general fueran absolotamente compatibles.
Buscando en Wikipedia, encuentro:
In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor which incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a conserved current within the framework of general relativity, so that the total energy–momentum crossing thehypersurface (3-dimensional boundary) of any compact space–time hypervolume (4-dimensional submanifold) vanishes.[/FONT]
[FONT=sans-serif]Some people object to this derivation on the grounds that pseudotensors are inappropriate objects in general relativity, but the conservation law only requires the use of the 4-divergence of a pseudotensor which is, in this case, a tensor (which also vanishes). Also, most pseudotensors are sections of jet bundles, which are perfectly valid objects in GR.
¿Podeis educarme para que entienda las dificultades de la relatividad general con la energía?
gracias[/FONT]
Comentario